2022年八年级轴对称与对称轴提高压轴题 .pdf
《2022年八年级轴对称与对称轴提高压轴题 .pdf》由会员分享,可在线阅读,更多相关《2022年八年级轴对称与对称轴提高压轴题 .pdf(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载轴对称压轴题1问题背景:如图( a) ,点 A、B 在直线 l 的同侧,要在直线l 上找一点C,使 AC 与 BC 的距离之和最小,我们可以作出点B 关于 l 的对称点B ,连接 A B与直线 l 交于点 C,则点 C 即为所求(1)实践运用:如图(b) ,已知, O 的直径 CD 为 4,点 A 在 O 上,ACD=30 ,B 为弧 AD 的中点, P 为直径 CD 上一动点,则 BP+AP 的最小值为_(2)知识拓展:如图( c) ,在 RtABC 中, AB=10 , BAC=45 , BAC 的平分线交BC 于点 D,E、F 分别是线段AD 和 AB 上的动点,求BE+
2、EF 的最小值,并写出解答过程2 (1)观察发现如图( 1) :若点 A、B 在直线 m 同侧,在直线m 上找一点P,使 AP+BP 的值最小,做法如下:作点 B 关于直线m 的对称点B ,连接 AB ,与直线 m 的交点就是所求的点P,线段 AB 的长度即为AP+BP 的最小值如图( 2) :在等边三角形ABC 中, AB=2 ,点 E 是 AB 的中点, AD 是高,在AD 上找一点P,使 BP+PE 的值最小,做法如下:作点 B 关于 AD 的对称点,恰好与点C 重合,连接CE 交 AD 于一点,则这点就是所求的点P,故 BP+PE 的最小值为_(2)实践运用如图( 3) :已知 O 的
3、直径 CD 为 2,的度数为 60 ,点 B 是的中点,在直径CD 上作出点P,使 BP+AP的值最小,则BP+AP 的值最小,则BP+AP 的最小值为_(3)拓展延伸精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 31 页学习必备欢迎下载如图( 4) :点 P 是四边形 ABCD 内一点,分别在边AB 、BC 上作出点M,点 N,使 PM+PN+MN 的值最小,保留作图痕迹,不写作法如图( 1) ,要在燃气管道l 上修建一个泵站,分别向A、B 两镇供气泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l 上找几个点试一试,能发现
4、什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法他把管道l 看成一条直线(图(2) ) ,问题就转化为,要在直线l 上找一点P,使 AP 与 BP 的和最小他的做法是这样的: 作点 B 关于直线 l 的对称点 B 连接 AB交直线 l 于点 P,则点 P 为所求请你参考小华的做法解决下列问题如图在ABC 中,点 D、E 分别是 AB 、AC 边的中点, BC=6, BC 边上的高为 4,请你在BC 边上确定一点P,使 PDE 得周长最小(1)在图中作出点P(保留作图痕迹,不写作法)(2)请直接写出PDE 周长的最小值:_4 (1)观察发现:如( a)图,若点A,B 在直线 l
5、 同侧,在直线l 上找一点P,使 AP+BP 的值最小做法如下:作点B 关于直线l 的对称点B,连接 AB ,与直线 l 的交点就是所求的点P再如( b)图,在等边三角形 ABC 中, AB=2 ,点 E 是 AB 的中点, AD 是高,在AD 上找一点P,使 BP+PE 的值最小做法如下: 作点 B 关于 AD 的对称点, 恰好与点 C 重合, 连接 CE 交 AD 于一点, 则这点就是所求的点P,故 BP+PE的最小值为_(2)实践运用:如( c)图,已知 O 的直径 CD 为 4, AOD 的度数为60 ,点 B 是的中点,在直径CD 上找一点P,使 BP+AP的值最小,并求BP+AP
6、的最小值(3)拓展延伸:如( d)图,在四边形ABCD 的对角线AC 上找一点 P,使 APB= APD保留作图痕迹,不必写出作法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 31 页学习必备欢迎下载5几何模型:条件:如下图,A、B 是直线 l 同旁的两个定点问题:在直线l 上确定一点P,使 PA+PB 的值最小方法:作点A 关于直线 l 的对称点A ,连接 A B 交 l 于点 P,则 PA+PB=A B 的值最小(不必证明) 模型应用:(1)如图 1,正方形 ABCD 的边长为2,E 为 AB 的中点, P是 AC 上一动点连接B
7、D,由正方形对称性可知,B与 D 关于直线AC 对称连接ED 交 AC 于 P,则 PB+PE 的最小值是_;(2)如图 2, O 的半径为2,点 A、B、C 在 O 上, OA OB, AOC=60 ,P 是 OB 上一动点,求PA+PC 的最小值;(3)如图 3, AOB=45 ,P 是 AOB 内一点, PO=10,Q、R 分别是 OA 、OB 上的动点,求PQR 周长的最小值6如图,已知平面直角坐标系,A、B 两点的坐标分别为A( 2, 3) ,B(4, 1) (1)若 P(p,0)是 x 轴上的一个动点,则当p=_时, PAB 的周长最短;(2)若 C( a,0) ,D(a+3,0)
8、是 x 轴上的两个动点,则当a=_时,四边形ABDC 的周长最短;(3)设 M,N 分别为 x 轴和 y 轴上的动点,请问:是否存在这样的点M(m,0) 、N(0,n) ,使四边形ABMN 的周长最短?若存在,请求出m=_, n=_(不必写解答过程) ;若不存在,请说明理由7需要在高速公路旁边修建一个飞机场,使飞机场到A, B 两个城市的距离之和最小,请作出机场的位置精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 31 页学习必备欢迎下载8如图所示,在一笔直的公路MN 的同一旁有两个新开发区A,B,已知 AB=10 千米,直线AB 与公
9、路 MN 的夹角 AON=30 ,新开发区B 到公路 MN 的距离 BC=3 千米(1)新开发区A 到公路 MN 的距离为_;(2)现要在 MN 上某点 P处向新开发区A,B 修两条公路PA,PB,使点 P到新开发区A,B 的距离之和最短此时 PA+PB=_(千米)9.如图:(1)若把图中小人平移,使点A 平移到点B,请你在图中画出平移后的小人;(2)若图中小人是一名游泳者的位置,他要先游到岸边l 上点 P处喝水后,再游到B,但要使游泳的路程最短,试在图中画出点P 的位置10如图,在直角坐标系中,等腰梯形ABB1A1的对称轴为y 轴(1)请画出:点A、B 关于原点O 的对称点A2、 B2(应保
10、留画图痕迹,不必写画法,也不必证明);(2)连接 A1A2、 B1B2(其中 A2、B2为( 1)中所画的点) ,试证明: x 轴垂直平分线段A1A2、B1B2;(3)设线段 AB 两端点的坐标分别为A( 2,4) 、B( 4,2) ,连接( 1)中 A2B2,试问在 x 轴上是否存在点C,使A1B1C 与 A2B2C 的周长之和最小?若存在,求出点C 的坐标(不必说明周长之和最小的理由);若不存在,请说明理由精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 31 页学习必备欢迎下载11某大型农场拟在公路L 旁修建一个农产品储藏、加工厂,
11、将该农场两个规模相同的水果生产基地A、B 的水果集中进行储藏和技术加工,以提高经济效益请你在图中标明加工厂所在的位置C,使 A、B 两地到加工厂C 的运输路程之和最短 (要求:用尺规作图,保留作图痕迹,不写作法和证明)12阅读理解如图 1,ABC 中,沿 BAC 的平分线 AB1折叠,剪掉重复部分;将余下部分沿B1A1C 的平分线A1B2折叠,剪掉重复部分; ;将余下部分沿BnAnC 的平分线AnBn+1折叠,点Bn与点 C 重合,无论折叠多少次,只要最后一次恰好重合,BAC 是ABC 的好角小丽展示了确定BAC 是ABC 的好角的两种情形情形一:如图2,沿等腰三角形ABC 顶角 BAC 的平
12、分线AB1折叠,点 B 与点 C 重合;情形二: 如图 3,沿 BAC 的平分线AB1折叠,剪掉重复部分; 将余下部分沿B1A1C的平分线 A1B2折叠,此时点B1与点 C 重合探究发现(1)ABC 中, B=2 C,经过两次折叠,BAC 是不是 ABC 的好角?_(填 “ 是 ” 或“ 不是 ” ) (2)小丽经过三次折叠发现了BAC 是ABC 的好角, 请探究 B 与 C (不妨设 B C)之间的等量关系 根据以上内容猜想:若经过n 次折叠 BAC 是 ABC 的好角,则 B 与 C(不妨设 B C)之间的等量关系为_应用提升(3)小丽找到一个三角形,三个角分别为15 、 60 、105
13、,发现 60 和 105 的两个角都是此三角形的好角请你完成,如果一个三角形的最小角是4 ,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角13如图, ABC 中 AB=AC ,BC=6 ,点 P 从点 B 出发沿射线BA 移动,同时,点Q 从点 C 出发沿线段 AC 的延长线移动,已知点P、Q 移动的速度相同,PQ 与直线 BC 相交于点D(1)如图 ,当点 P 为 AB 的中点时,求CD 的长;(2)如图 ,过点 P 作直线 BC 的垂线垂足为E,当点 P、 Q 在移动的过程中,线段BE、DE、CD 中是否存在长度保持不变的线段?请说明理由;精选学习资料 - - - -
14、- - - - - 名师归纳总结 - - - - - - -第 5 页,共 31 页学习必备欢迎下载14 (2012?东城区二模)已知:等边ABC 中,点 O 是边 AC ,BC 的垂直平分线的交点,M,N 分别在直线AC ,BC 上,且 MON=60 (1)如图 1,当 CM=CN 时, M、N 分别在边 AC、BC 上时,请写出AM 、 CN、MN 三者之间的数量关系;(2)如图 2,当 CM CN 时,M、N 分别在边AC 、BC 上时, (1)中的结论是否仍然成立?若成立,请你加以证明;若不成立,请说明理由;(3)如图 3,当点 M 在边 AC 上,点 N 在 BC 的延长线上时,请直
15、接写出线段AM 、CN、MN 三者之间的数量关系15如图,线段CD 垂直平分线段AB, CA 的延长线交BD 的延长线于E,CB 的延长线交AD 的延长线于F,求证: DE=DF 16如图,在 ABC 和DCB 中, AB=DC ,AC=DB ,AC 与 DB 交于点 M求证:(1)ABC DCB;(2)点 M 在 BC 的垂直平分线上17如图, ABC 的边 BC 的垂直平分线DE 交 BAC 的外角平分线AD 于 D,E 为垂足, DFAB 于 F,且 ABAC,求证: BF=AC+AF 18已知 ABC 的角平分线AP 与边 BC 的垂直平分线PM 相交于点P,作 PK AB,PLAC,
16、垂足分别是K、L,求证: BK=CL 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 31 页学习必备欢迎下载19某私营企业要修建一个加油站,如图,其设计要求是,加油站到两村A、B 的距离必须相等,且到两条公路m、n 的距离也必须相等,那么加油站应修在什么位置,在图上标出它的位置(要有作图痕迹)20如图,在 ABC 中, AB=AC , A=120 ,BC=9cm , AB 的垂直平分线MN 交 BC 于 M,交 AB 于 N,求 BM的长21 如图,在ABC 中, BAC 的平分线与BC 的垂直平分线PQ 相交于点P, 过点 P 分别
17、作 PNAB 于 N, PMAC于点 M,求证: BN=CM 22如图己知在 ABC 中, C=90 ,B=15 ,DE 垂直平分AB,E 为垂足交BC 于 D,BD=16cm ,求 AC 长精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 31 页学习必备欢迎下载2013年 10 月初中数学组卷参考答案与试题解析一解答题(共22 小题)1 (2013?日照)问题背景:如图( a) ,点 A、B 在直线 l 的同侧,要在直线l 上找一点C,使 AC 与 BC 的距离之和最小,我们可以作出点B 关于 l 的对称点B ,连接 A B与直线 l
18、 交于点 C,则点 C 即为所求(1)实践运用:如图(b) ,已知, O 的直径 CD 为 4,点 A 在 O 上,ACD=30 ,B 为弧 AD 的中点, P 为直径 CD 上一动点,则 BP+AP 的最小值为2(2)知识拓展:如图( c) ,在 RtABC 中, AB=10 , BAC=45 , BAC 的平分线交BC 于点 D,E、F 分别是线段AD 和 AB 上的动点,求BE+EF 的最小值,并写出解答过程考点 :轴对称 -最短路线问题分析:(1)找点 A 或点 B 关于 CD 的对称点,再连接其中一点的对称点和另一点,和MN 的交点 P就是所求作的位置根据题意先求出CAE,再根据勾股
19、定理求出AE,即可得出PA+PB 的最小值;(2)首先在斜边AC 上截取 AB =AB ,连结 BB ,再过点 B 作 B F AB,垂足为F,交 AD 于 E,连结 BE,则线段BF 的长即为所求解答:解: (1)作点 B 关于 CD 的对称点E,连接 AE 交 CD 于点 P 此时 PA+PB 最小,且等于AE作直径 AC ,连接 C E根据垂径定理得弧BD=弧 DE ACD=30 , AOD=60 , DOE=30 , AOE=90 , C AE=45 ,又 AC 为圆的直径,AEC =90 , C =C AE=45 ,CE=AE=AC =2,即 AP+BP 的最小值是2故答案为: 2;
20、(2)如图,在斜边AC 上截取 AB =AB ,连结 BBAD 平分 BAC ,点 B 与点 B 关于直线 AD 对称过点 B作 B FAB ,垂足为F,交 AD 于 E,连结 BE,则线段 B F 的长即为所求 (点到直线的距离最短)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 31 页学习必备欢迎下载在 RtAFB 中, BAC=45 ,AB=AB=10 ,BF=AB ?sin45 =AB ?sin45 =10=5,BE+EF 的最小值为点评:此题主要考查了利用轴对称求最短路径问题以及锐角三角函数关系等知识,根据已知得出对应点P位
21、置是解题关键2 (2013?六盘水)(1)观察发现如图( 1) :若点 A、B 在直线 m 同侧,在直线m 上找一点P,使 AP+BP 的值最小,做法如下:作点 B 关于直线m 的对称点B ,连接 AB ,与直线 m 的交点就是所求的点P,线段 AB 的长度即为AP+BP 的最小值如图( 2) :在等边三角形ABC 中, AB=2 ,点 E 是 AB 的中点, AD 是高,在AD 上找一点P,使 BP+PE 的值最小,做法如下:作点 B 关于 AD 的对称点,恰好与点C 重合,连接CE 交 AD 于一点,则这点就是所求的点P,故 BP+PE 的最小值为(2)实践运用如图( 3) :已知 O 的
22、直径 CD 为 2,的度数为 60 ,点 B 是的中点,在直径CD 上作出点P,使 BP+AP的值最小,则BP+AP 的值最小,则BP+AP 的最小值为(3)拓展延伸精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 31 页学习必备欢迎下载如图( 4) :点 P 是四边形 ABCD 内一点,分别在边AB 、BC 上作出点M,点 N,使 PM+PN+MN 的值最小,保留作图痕迹,不写作法考点 :圆的综合题;轴对称-最短路线问题专题 :压轴题分析:(1)观察发现:利用作法得到CE 的长为 BP+PE 的最小值;由AB=2 ,点 E 是 AB
23、的中点,根据等边三角形的性质得到CE AB, BCE=BCA=30 ,BE=1,再根据含30 度的直角三角形三边的关系得CE=;(2)实践运用:过B 点作弦 BECD,连结 AE 交 CD 于 P 点,连结 OB、OE、OA、 PB,根据垂径定理得到CD 平分 BE,即点 E 与点 B 关于 CD 对称,则AE 的长就是BP+AP 的最小值;由于的度数为60 , 点 B 是的中点得到BOC=30 ,AOC=60 , 所以 AOE=60 +30 =90 ,于是可判断 OAE 为等腰直角三角形,则AE=OA=;(3)拓展延伸:分别作出点P 关于 AB 和 BC 的对称点 E 和 F,然后连结EF,
24、EF 交 AB 于 M、交 BC 于 N解答:解: (1)观察发现如图( 2) ,CE 的长为 BP+PE 的最小值,在等边三角形ABC 中, AB=2,点 E 是 AB 的中点CEAB , BCE=BCA=30 ,BE=1,CE=BE=;故答案为;(2)实践运用如图( 3) ,过 B 点作弦 BECD,连结 AE 交 CD 于 P点,连结 OB、OE、OA、PB,BECD,CD 平分 BE,即点 E 与点 B 关于 CD 对称,的度数为60 ,点 B 是的中点, BOC=30 , AOC=60 , EOC=30 , AOE=60 +30 =90 ,OA=OE=1 ,AE=OA=,AE 的长就
25、是BP+AP 的最小值故答案为;(3)拓展延伸如图( 4) 点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握等边三角形的性质以及轴对称最短路径问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 31 页学习必备欢迎下载3 (2012?凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题如图( 1) ,要在燃气管道l 上修建一个泵站,分别向A、B 两镇供气泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l 上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年八年级轴对称与对称轴提高压轴题 2022 年级 轴对称 对称轴 提高 压轴
限制150内