2022年函数解析式的七种求法 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年函数解析式的七种求法 .pdf》由会员分享,可在线阅读,更多相关《2022年函数解析式的七种求法 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料欢迎下载一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系, 是函数与自变量建立联系的一座桥梁,其一般形式是 yf(x) ,不能把它写成 f(x,y)0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数 fg(x) 的表达式,求 f(x)
2、的表达式时可以令 tg(x) ,以换元法解之;(4)构造方程组法:若给出 f(x)和 f(x) ,或 f(x)和 f(1/x)的一个方程,则可以 x 代换x(或1/x) ,构造出另一个方程,解此方程组,消去 f(x) (或 f(1/x) )即可求出 f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出 y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自
3、变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外, 还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数 yfg(x) 的定义域的求解,应先由 yf(u)求出 u 的范围,即 g(x)的范围,再从中解出x 的范围 I1;再由 g(x)求出 yg(x)的定义域 I2,I1和 I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论, 若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,
4、但在叙述结论时需要对分类后求得的各个集合求并集, 作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数 f:AB 中,集合 B 未必就是该函数的值域,若记该函数的值域为 C,则 C 是 B 的子集;若 CB,那么该函数作为映射我们称为 “ 满射” ;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年函数解析式的七种求法 2022 函数 解析 求法
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内