2022年人教版数学八年级知识点 2.pdf
《2022年人教版数学八年级知识点 2.pdf》由会员分享,可在线阅读,更多相关《2022年人教版数学八年级知识点 2.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载人教版八年级上册数学知识点及基本方法步骤第十一章全等三角形1 全等三角形的性质:全等三角形对应边相等、对应角相等。2 全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS) 、两角和它们的夹边(ASA ) 、两角和其中一角的对边对应相等(AAS) 、斜边和直角边相等的两直角三角形( HL) 。3 角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等4 角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。5 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:、 确定已知条件 (包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、
2、高、等腰三角形、等所隐含的边角关系) ,、回顾三角形判定,搞清我们还需要什么,、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 第十二章轴对称1如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。2轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。3角平分线上的点到角两边距离相等。4线段垂直平分线上的任意一点到线段两个端点的距离相等。5与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。6轴对称图形上对应线段相等、对应角相等。7画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序
3、依次连接各点。8点( x,y)关于 x 轴对称的点的坐标为(x,-y)点( x,y)关于 y 轴对称的点的坐标为(-x,y)点( x,y)关于原点轴对称的点的坐标为(-x,-y)9等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、 底边上的中线互相重合,简称为 “三线合一” 。10等腰三角形的判定:等角对等边。11等边三角形的三个内角相等,等于60,12等边三角形的判定:三个角都相等的三角形是等腰三角形。有一个角是60的等腰三角形是等边三角形两个角是60的三角形是等边三角形。13直角三角形中,30角所对的直角边等于斜边的一半。14直角三角形斜边上的中
4、线等于斜边的一半第十三章实数算术平方根:一般地,如果一个正数 x 的平方等于a,即 x2=a,那么正数x 叫做 a 的算术平方根,记作a。0 的算术平方根为0;从定义可知,只有当a0 时,a 才有算术平方根。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页学习必备欢迎下载)(无限不循环小数负有理数正有理数无理数)()32,21()32,21()()3,2, 1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、实数321000.0kbbb321000.0kbbb平方根:一般地,如果一个数 x 的
5、平方根等于a,即 x2=a,那么数x 就叫做 a 的平方根。正数有两个平方根(一正一负)它们互为相反数;0 只有一个平方根,就是它本身;负数没有平方根。正数的立方根是正数;0 的立方根是0;负数的立方根是负数。数 a 的相反数是 -a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0 的绝对值是0. )0, 0(0, 0babababaabba第十四章一次函数1画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出 5 个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般
6、画一次函数只用两点) ,三、连线(依次用平滑曲线连接各点)。2根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。3若两个变量x,y 间的关系式可以表示成y=kx+b( k0) 的形式 , 则称 y 是 x 的一次函数 (x为自变量 ,y 为因变量 ) 。特别地 , 当 b=0 时, 称 y 是 x 的正比例函数。4正比列函数一般式:y=kx(k 0) ,其图象是经过原点(0,0)的一条直线。5正比列函数y=kx( k0)的图象是一条经过原点的直线,当k0 时,直线y=kx 经过第一、三象限 ,y 随 x 的增大而增大,当k0 时 ,y 随 x 的增大而增大 ;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年人教版数学八年级知识点 2022 年人教版 数学 年级 知识点
限制150内