2022年八年级数学因式分解知识点 .pdf
《2022年八年级数学因式分解知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年八年级数学因式分解知识点 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结优秀知识点第四章因式分解把一个多项式化成几个整式的积的形式 ,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法. 如多项式),(cbamcmbmam其中 m叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式二、运用公式法. 运用公式法,即用)(,)(2),)(223322222babababababababababa三、分组分解法. (一)分组后能直接提公因式例 1、分解因式:bnbmanam分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含
2、有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式 =)()(bnbmanam=)()(nmbnma每组之间还有公因式!=)(banm思考:此题还可以怎样分组?此类型分组的关键:分组后, 每组内可以提公因式,且各组分解后, 组与组之间又有公因式可以提。例 2、分解因式:bxbyayax5102解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组。第二、三项为一组。解:原式 =)5()102(bxbyayax原式 =)510()2(byaybxax=)5()5(2yxbyxa=)2(5)2(baybax=)2)(5(bay
3、x=)5)(2(yxba(二)分组后能直接运用公式例 3、分解因式:ayaxyx22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。解:原式 =)()(22ayaxyx=)()(yxayxyx=)(ayxyx例 4、分解因式:2222cbaba解:原式 =222)2(cbaba=22)(cba=)(cbacba练习:分解因式3、yyxx39224、yzzyx2222练习:(1)3223yxyyxx(2)baaxbxbxax22精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6
4、页名师总结优秀知识点(3)181696222aayxyx( 4)abbaba4912622(5)92234aaa(6)ybxbyaxa222244(7)222yyzxzxyx(8)122222abbbaa(9))1)(1()2(mmyy(10))2()(abbcaca(11)abcbaccabcba2)()()(222(12)abccba3333四、十字相乘法. (一)二次项系数为1 的二次三项式直接利用公式)()(2qxpxpqxqpx进行分解。特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。例 5、分解因式:652xx分析:将6 分成两个数相乘
5、,且这两个数的和要等于5。由于 6=2 3=(-2)(-3)=16=(-1)(-6), 从中可以发现只有23的分解适合, 即 2+3=5。1 2 解:652xx=32)32(2xx1 3 =)3)(2(xx12+13=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。例 6、分解因式:672xx解:原式 =)6)(1()6() 1(2xx1 -1 =)6)(1(xx1 -6 (-1)+(-6)= -7 练习 5、分解因式 (1)24142xx(2)36152aa(3)542xx练习 6、分解因式 (1)22xx(2)1522yy(3)24102xx
6、(二)二次项系数不为1 的二次三项式cbxax2条件:(1)21aaa1a1c(2)21ccc2a2c(3)1221cacab1221cacab分解结果:cbxax2=)(2211cxacxa例 7、分解因式:101132xx分析:1 -2 3 -5 (-6) +(-5)= -11 解:101132xx=)53)(2(xx练习 7、分解因式:(1)6752xx(2)2732xx(3)317102xx( 4)101162yy精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页名师总结优秀知识点(三)二次项系数为1 的齐次多项式例 8、分
7、解因式:221288baba分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解。1 8b 1 -16b 8b+(-16b)= -8b 解:221288baba=)16(8)16(82bbabba=)16)(8(baba练习 8、分解因式 (1)2223yxyx(2)2286nmnm(3)226baba(四)二次项系数不为1 的齐次多项式例 9、22672yxyx例 10、2322xyyx1 -2y 把xy看作一个整体1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式 =)32)(2(yxyx解:原式 =)2)(1(x
8、yxy练习 9、分解因式:(1)224715yxyx( 2)8622axxa综合练习10、 ( 1)17836xx(2)22151112yxyx(3)10)(3)(2yxyx(4)344)(2baba(5)222265xyxyx(6)2634422nmnmnm(7)3424422yxyxyx(8)2222)(10)(23)(5bababa(9)10364422yyxxyx( 10)2222)(2)(11)(12yxyxyx思考:分解因式:abcxcbaabcx)(2222五、主元法 . 例 11、分解因式:2910322yxyxyx5 -2 解法一:以x为主元2 -1 解:原式 =)2910(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年八年级数学因式分解知识点 2022 八年 级数 因式分解 知识点
限制150内