2022年函数奇偶性的知识点及例题解析 .pdf
《2022年函数奇偶性的知识点及例题解析 .pdf》由会员分享,可在线阅读,更多相关《2022年函数奇偶性的知识点及例题解析 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结优秀知识点函数的奇偶性知识点及例题解析一、知识要点:1、函数奇偶性的概念一般地,对于函数)(xf,如果对于函数定义域内任意一个x,都有)()(xfxf,那么函数)(xf就叫做偶函数。一般地,对于函数)(xf,如果对于函数定义域内任意一个x,都有)()(xfxf,那么函数)(xf就叫做奇函数。理解:(1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“ 整体 ” 性质,单调性是一个“ 局部 ” 性质;(2)定义域关于原点对称是函数具有奇偶性的必要条件。2、按奇偶性分类,函数可分为四类:奇函数非偶函数、偶函数非奇函数、非奇非偶函数
2、、亦奇亦偶函数.3、奇偶函数的图象:奇函数图象关于原点成中心对称的函数,偶函数图象关于y轴对称的函数。4、函数奇偶性的性质:具有奇偶性的函数,其定义域关于原点对称(也就是说, 函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。常用的结论:若f(x)是奇函数,且x 在 0 处有定义,则f(0)0。奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数 f(x)在区间 a,b(0ab)上单调递增 (减) ,则 f(x)在区间 b,a上也是单调递增 (减);偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反,最值相同。偶函数 f(x)在区间 a,b(0ab)上单调
3、递增(减) ,则 f(x)在区间 b,a上单调递减(增)任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个偶函数的和。若函数g(x),f(x),fg(x)的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时, y=fg(x)是奇函数; u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= fg(x)是偶函数。复合函数的奇偶性特点是:“内偶则偶,内奇同外”. 5、判断函数奇偶性的方法:、定义法:对于函数( )f x的定义域内任意一个x,都有xfxf或1xfxf或0 xfxf函数 f (x)是偶函数;对于函数( )f x的定义域内任意一个x,都有xfxf或1xf
4、xf或0 xfxf函数 f (x)是奇函数;判断函数奇偶性的步骤:、判断定义域是否关于原点对称;、比较)( xf与)(xf的关系。、扣定义,下结论。、图象法:图象关于原点成中心对称的函数是奇函数;图象关于y轴对称的函数是偶函数。 ,、运算法:几个与函数奇偶性相关的结论:奇函数 +奇函数 =奇函数;偶函数+偶函数 =偶函数;奇函数奇函数=偶函数;奇函数偶函数=奇函数。若( )f x为偶函数,则()( )(|)fxf xfx。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页名师总结优秀知识点二、典例分析1、给出函数解析式判断其奇偶性:
5、分析:判断函数的奇偶性,先要求定义域,定义域不关于原点对称的是非奇非偶函数,若定义域关于原点对称,再看f(x)与 f(x)的关系 . 【例 1】 判断下列函数的奇偶性:(1).2( )21;fxxx(2) .223( ),0 ;3xxf xxxxx解:()f x函数的定义域是(),2()21f xxx,2()()21fxxx221( )xxf x,2()21f xxx为偶函数。(法 2图象法):画出函数2( )21f xxx的图象如下:由函数2()21fxxx的图象可知,2()21f xxx为偶函数。说明:解答题要用定义法判断函数的奇偶性,选择题、填空题可用图象法判断函数的奇偶性。(2) .
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年函数奇偶性的知识点及例题解析 2022 函数 奇偶性 知识点 例题 解析
限制150内