数据挖掘平台建设方案.doc
《数据挖掘平台建设方案.doc》由会员分享,可在线阅读,更多相关《数据挖掘平台建设方案.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数据挖掘平台建设方案1.1.1.1 平台简介DataSense数据挖掘系统主要提供实现大多数主流的数据挖掘功能,包括属性选择、分类预测、回归预测、聚类分析、关联分析、时间序列分析等6大类。为适应不同业务数据的特点,对同一个数据挖掘功能,通过多种算法进行实现,例如“分类预测”有决策树、分类回归树、支撑向量机分类、神经网络分类、贝叶斯网络、朴素贝叶斯、逻辑回归、分类组合模型等算法可供上层应用选择,具有高处理性能和高可靠性,可不间断接受任务。1.1.1.2 平台设计数据挖掘架构图DataSense数据挖掘系统采用了数据立方大数据库作为对系统海量数据的底层存储平台,提供了高效的ETL工具,能够对海量数
2、据进行高效快速的清洗。前端WEB部分方便用户管理和使用系统,对于数据挖掘的结果提供了饼图、散点图、折线图、面积图、柱状图、雷达图、线箱图、分布图、多折线图、帕累托图等10类可视化手段,利于业务系统对数据和模型的观察和调用。DataSense数据挖掘核心模块系统架构:DataSense核心模块图 分布式数据挖掘引擎管理本机上同时运行的多个计算任务,协调资源分配。 分布式挖掘运行时独立的数据挖掘程序,负责对切分好的最小单元任务进行处理。 DataSense分布式数据挖掘管理引擎提供对数据挖掘应用的API,同时负责对整个数据挖掘任务的调度管理。 分布式数据挖掘算法库提供对数据挖掘常用的基本挖掘算法,
3、同时用户可以自己任意添加新的挖掘算法。1.1.1.3 主要功能DataSense数据挖掘系统实现了大多数主流的数据挖掘功能,包括属性选择、分类预测、回归预测、聚类分析、关联分析、时间序列分析等6大类。为适应不同业务数据的特点,对同一个数据挖掘功能,通过多种算法进行实现,例如“分类预测”有决策树、分类回归树、支撑向量机分类、神经网络分类、贝叶斯网络、朴素贝叶斯、逻辑回归、分类组合模型等算法可供用户选用。共计包含了27个数据挖掘算法。 平台界面DataSense分布式数据挖掘平台提供对集群机器的负载监控,磁盘监控等基本管理功能。用户可以快速方便的监控整个集群的运行状态。 数据导入负责对数据的导入,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 平台 建设 方案
限制150内