云数据采集中心数据运营方案.doc
《云数据采集中心数据运营方案.doc》由会员分享,可在线阅读,更多相关《云数据采集中心数据运营方案.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 云数据采集中心数据运营方案1.1 数据挖掘分析行业数据挖掘分析普遍采用CRISP-DM方法论。CRISP-DM将一个数据挖掘项目的生命周期定义为六个阶段:业务理解(也称为商业理解)、数据理解、数据准备、建立模型、模型评估、模型发布。1.业务理解:从业务的角度理解项目目标和需求,然后将这种需求转换成一种数据挖掘的问题定义,并设计出达到目标的一个初步计划。2.数据理解:收集初始数据,识别数据的质量问题,找到对数据的基本观察、或假设隐含的信息来监测出感兴趣的数据子集。3.数据准备:对可用的原始数据进行一系列的组织以及清洗,使之达到建模需求。1.建立模型:选择各种建模技术,并将其参数校正到优化值。常
2、常要退回到数据准备阶段。5.模型评估:对建立的模型进行评估,重点具体考虑得出的结果是否符合第一步的商业目的。6.模型发布:将发现的结果进行总结与应用。1.2 数据分析处理的主要工作首先,是数据仓库或数据集市的建立,对数据进行预处理。数据分析处理以企业经营管理需求为基础,根据不同分析主题,从企业许多来自不同的运作系统的数据中提取出有用的数据,以保证数据的正确性,然后经过抽取、转换和装载,即ETL过程,合并到一个企业级的数据仓库里,得到企业数据的一个全局视图。其次,是联机分析处理和数据挖掘,进而将数据转化为信息和知识。联机分析处理是在数据仓库的基础上,对商业问题进行建模和数据进行多维分析。而数据挖
3、掘通过分析每个数据,从大量数据中寻找其规律的技术。即使用诸如神经网络、规则归纳等技术,用来发现数据间的联系,做出基于数据的推断。通过联机分析处理和数据挖掘,决策人员和高层管理能从多维角度准确掌控企业的经营状况和了解不同数据之间的相关关系,以便制定正确的决策。最后,是知识结论的可视化展示,实现知识向智慧转变。通过借助信息化系统,以简单、丰富和直观的形式,将查询报表、统计分析、多维联机分析和数据发掘的结论展现企业管理者和决策者的面前。而随着管理者对知识的不断积累和更新,会进一步将知识转化为企业管理者的智慧。最终成果为:根据招商大数据平台数据运营规范相关要求至少进行三个月的数据运营服务,并提供数据运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 采集 中心 运营 方案
限制150内