2022年初三数学知识点总结【很好】 .pdf
《2022年初三数学知识点总结【很好】 .pdf》由会员分享,可在线阅读,更多相关《2022年初三数学知识点总结【很好】 .pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、知识点 1:一元二次方程的基本概念1一元二次方程3x2+5x-2=0 的常数项是 -2. 2一元二次方程3x2+4x-2=0 的一次项系数为4,常数项是 -2. 3一元二次方程3x2-5x-7=0 的二次项系数为3,常数项是 -7. 4把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0. 知识点 2:直角坐标系与点的位置1直角坐标系中,点A(3, 0)在 y 轴上。2直角坐标系中,x 轴上的任意点的横坐标为0. 3直角坐标系中,点A(1, 1)在第一象限 . 4直角坐标系中,点A(-2,3)在第四象限. 5直角坐标系中,点A(-2,1)在第二象限. 知识点 3:已知自变量的值求函数
2、值1当 x=2 时,函数 y=32x的值为 1. 2当 x=3 时,函数 y=21x的值为 1. 3当 x=-1 时,函数 y=321x的值为 1. 知识点 4:基本函数的概念及性质1函数 y=-8x 是一次函数 . 2函数 y=4x+1 是正比例函数. 3函数xy21是反比例函数. 4抛物线y=-3(x-2)2-5 的开口向下 . 5抛物线y=4(x-3)2-10 的对称轴是x=3. 6抛物线2)1(212xy的顶点坐标是 (1,2). 7反比例函数xy2的图象在第一、三象限. 知识点 5:数据的平均数中位数与众数1数据 13,10,12,8,7 的平均数是10. 2数据 3,4,2,4,4
3、 的众数是4. 3数据 1, 2,3,4,5 的中位数是3. 知识点 6:特殊三角函数值1cos30= 23. 2sin260+ cos260 = 1. 32sin30 + tan45= 2. 4tan45= 1. 5cos60+ sin30= 1. 知识点 7:圆的基本性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 23 页1半圆或直径所对的圆周角是直角. 2任意一个三角形一定有一个外接圆. 3在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4在同圆或等圆中,相等的圆心角所对的弧相等. 5同弧所对的
4、圆周角等于圆心角的一半. 6同圆或等圆的半径相等. 7过三个点一定可以作一个圆. 8长度相等的两条弧是等弧. 9在同圆或等圆中,相等的圆心角所对的弧相等. 10经过圆心平分弦的直径垂直于弦。知识点 8:直线与圆的位置关系1直线与圆有唯一公共点时,叫做直线与圆相切. 2三角形的外接圆的圆心叫做三角形的外心. 3弦切角等于所夹的弧所对的圆心角. 4三角形的内切圆的圆心叫做三角形的内心. 5垂直于半径的直线必为圆的切线. 6过半径的外端点并且垂直于半径的直线是圆的切线. 7垂直于半径的直线是圆的切线. 8圆的切线垂直于过切点的半径. 知识点 9:圆与圆的位置关系1两个圆有且只有一个公共点时,叫做这两
5、个圆外切. 2相交两圆的连心线垂直平分公共弦. 3两个圆有两个公共点时,叫做这两个圆相交. 4两个圆内切时,这两个圆的公切线只有一条. 5相切两圆的连心线必过切点. 知识点 10:正多边形基本性质1正六边形的中心角为60. 2矩形是正多边形. 3正多边形都是轴对称图形. 4正多边形都是中心对称图形. 知识点 11:一元二次方程的解1方程042x的根为. A x=2 Bx=-2 C x1=2,x2=-2 Dx=4 2方程 x2-1=0 的两根为. A x=1 Bx=-1 Cx1=1,x2=-1 Dx=2 3方程( x-3)( x+4)=0 的两根为. A.x1=-3,x2=4 B.x1=-3,x
6、2=-4 C.x1=3,x2=4 D.x1=3,x2=-4 4方程 x(x-2)=0 的两根为. A x1=0,x2=2 Bx1=1,x2=2 Cx1=0,x2=-2 Dx1=1,x2=-2 5方程 x2-9=0 的两根为. A x=3 Bx=-3 Cx1=3,x2=-3 D x1=+3,x2=-3精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 23 页知识点 12:方程解的情况及换元法1一元二次方程02342xx的根的情况是 . A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2不解方程 ,判别方程3x2
7、-5x+3=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3不解方程 ,判别方程3x2+4x+2=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根4不解方程 ,判别方程4x2+4x-1=0 的根的情况是. A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5不解方程 ,判别方程5x2-7x+5=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根6不解方程 ,判别方程5x2+7x=-5 的根的情况是. A.有
8、两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根7不解方程 ,判别方程x2+4x+2=0 的根的情况是. A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根8. 不解方程 ,判断方程5y2+1=25y 的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用 换元 法解方 程4)3(5322xxxx时, 令32xx= y ,于 是原方程变为 .A.y2-5y+4=0 B.y2-5y-4=0 C.y2-4y-5=0 D.y2+4y-5=0 10. 用换元法解方程4)3(5322xxxx时,令
9、23xx= y , 于 是原方程变为 .A.5y2-4y+1=0 B.5y2-4y-1=0 C.-5y2-4y-1=0 D. -5y2-4y-1=0 11. 用换元法解方程(1xx)2-5(1xx)+6=0 时,设1xx=y,则原方程化为关于y 的方程是. A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0 知识点 13:自变量的取值范围1函数2xy中,自变量x 的取值范围是 . A.x 2 B.x-2 C.x-2 D.x -2 2函数 y=31x的自变量的取值范围是. A.x3 B. x 3 C. x3 D. x 为任意实数精选学习资料 - - -
10、 - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 23 页3函数 y=11x的自变量的取值范围是. A.x -1 B. x-1 C. x1 D. x-1 4函数 y=11x的自变量的取值范围是. A.x 1 B.x1 C.x 1 D.x 为任意实数5函数 y=25x的自变量的取值范围是. A.x5 B.x5 C.x5 D.x 为任意实数知识点 14:基本函数的概念1下列函数中,正比例函数是 . A. y=-8x B.y=-8x+1 C.y=8x2+1 D.y=x82下列函数中,反比例函数是 . A. y=8x2B.y=8x+1 C.y=-8x D.y=-x83下
11、列函数:y=8x2;y=8x+1 ;y=-8x ;y=-x8.其 中,一次 函数有个 . A.1 个B.2 个C.3 个D.4 个知识点 15:圆的基本性质1如图,四边形ABCD 内接于 O,已知 C=80,则 A 的度数是 . A. 50B. 80C. 90D. 1002已知: 如 图, O中, 圆周角 BAD=50 ,则圆周角 BCD 的度数是 . A.100 B.130C.80D.503已知: 如 图, O中, 圆心角 BOD=100,则圆周角 BCD 的度数是 . A.100 B.130C.80D.504已知:如图,四边形ABCD 内接于 O,则下列结论中正确的是 . A.A+ C=1
12、80B.A+ C=90C.A+B=180 D.A+ B=90 5半径为5cm 的圆中 ,有一条长为6cm 的弦 ,则圆心到此弦的距离为. A.3cm B.4cm C.5cm D.6cm 6已知:如图,圆周角BAD=50 ,则圆心角 BOD 的度数是. A.100 B.130C.80D.50 7已知: 如 图, O中,弧 AB的度数为 100 ,则圆周角 ACB 的度数是 . A.100 B.130C.200D.50 8. 已知: 如 图,O中, 圆周角 BCD=130,则圆心角 BOD 的度数是 . A.100 B.130C.80D.509. 在 O 中 ,弦 AB 的长为 8cm,圆心 O
13、到 AB 的距离为3cm,则 O 的半径为cm. A.3 B.4 C.5 D. 10 10. 已知: 如 图, O中,弧AB的度数为 100,则圆周角 ACB 的度数是 . A.100 B.130C.200D.50 12在半径为5cm 的圆中 ,有一条弦长为6cm,则圆心到此弦的距离为. ?DBCAO?BOCAD?CBAO?BOCAD?BOCAD?BOCAD?CBAO精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 23 页A. 3cm B. 4 cm C.5 cm D.6 cm 知识点 16:点、直线和圆的位置关系1已知 O 的半径为1
14、0 ,如果一条直线和圆心O 的距离为10 ,那么这条直线和这个圆的位置关系为 . A.相离B.相切C.相交D. 相交或相离2已知圆的半径为6.5cm,直线 l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是. A.相切B.相离C.相交D. 相离或相交3已知圆 O 的半径为 6.5cm,PO=6cm, 那么点 P和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4已知圆的半径为6.5cm,直线 l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是. A.0 个B.1 个C.2 个D.不能确定5一个圆的周长为a cm,面积为 a cm2,如果一条直线到圆
15、心的距离为cm,那么这条直线和这个圆的位置关系是 . A.相切B.相离C.相交D. 不能确定6已知圆的半径为6.5cm,直线 l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是. A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线 l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是. A.相切B.相离C.相交D. 相离或相交8. 已知O 的半径为 7cm,PO=14cm, 则 PO的中点和这个圆的位置关系是 . A.点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点 17:圆与圆的位置关系1 O1和 O2的半径分别为3cm 和 4cm,若 O1O2=1
16、0cm,则这两圆的位置关系是 . A. 外离B. 外切C. 相交D. 内切2已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=9cm,则这两个圆的位置关系是. A.内切B. 外切C. 相交D. 外离3已知 O1、 O2的半径分别为3cm 和 5cm,若 O1O2=1cm,则这两个圆的位置关系是. A.外切B.相交C. 内切D. 内含4已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=7cm,则这两个圆的位置关系是. A.外离B. 外切C.相交D.内切5已知 O1、O2的半径分别为3cm 和 4cm,两圆的一条外公切线长43,则两圆的位置关系是. A.外切B. 内切C
17、.内含D. 相交6已知 O1、 O2的半径分别为2cm 和 6cm,若 O1O2=6cm,则这两个圆的位置关系是. A.外切B.相交C. 内切D. 内含知识点 18:公切线问题1如果两圆外离,则公切线的条数为. A. 1 条B.2 条C.3 条D.4 条2如果两圆外切,它们的公切线的条数为. A. 1 条B. 2 条C.3 条D.4 条3如果两圆相交,那么它们的公切线的条数为. A. 1 条B. 2 条C.3 条D.4 条4如果两圆内切,它们的公切线的条数为 . A. 1 条B. 2 条C.3 条D.4 条精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - -
18、-第 5 页,共 23 页5. 已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=9cm,则这两个圆的公切线有条. A.1 条B. 2 条C. 3 条D. 4 条6已知 O1、 O2的半径分别为3cm 和 4cm,若 O1O2=7cm,则这两个圆的公切线有条. A.1 条B. 2 条C. 3 条D. 4 条知识点 19:正多边形和圆1如果 O 的周长为10cm,那么它的半径为 . A. 5cm B.10 cm C.10cm D.5 cm 2正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B. 3C.1 D.23已知 ,正方形的边长为2,那么这个正方形内切圆的半径为.
19、 A. 2 B. 1 C.2D.34扇形的面积为32,半径为 2,那么这个扇形的圆心角为= . A.30 B.60C.90D. 1205已知 ,正六边形的半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R36圆的周长为C,那么这个圆的面积S= . A.2CB.2CC.22CD.42C7正三角形内切圆与外接圆的半径之比为 . A.1:2 B.1:3C.3:2 D.1:28. 圆的周长为C,那么这个圆的半径R= . A.2CB. CC. 2CD. C9.已知 ,正方形的边长为2,那么这个正方形外接圆的半径为. A.2 B.4 C.22D.2310已知 ,正三角形的半径为3
20、,那么这个正三角形的边长为 . A. 3 B. 3C.32D.33知识点 20:函数图像问题1已知:关于x 的一元二次方程32cbxax的一个根为21x,且二次函数cbxaxy2的对称轴是直线 x=2,则抛物线的顶点坐标是 . A. (2 ,-3) B. (2 ,1) C. (2,3) D. (3,2) 2若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是. A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 3一次函数y=x+1 的图象在. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 23 页A.第一、
21、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限4函数 y=2x+1 的图象不经过. A.第一象限B. 第二象限C. 第三象限D. 第四象限5反比例函数y=x2的图象在. A.第一、二象限B. 第三、四象限 C. 第一、三象限D. 第二、四象限6反比例函数y=-x10的图象不经过. A 第一、二象限B. 第三、四象限 C. 第一、三象限D. 第二、四象限7若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是. A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 8一次函数y=-x+1 的图象在. A第一、二、三象限B. 第一、三、四象限C.
22、 第一、二、四象限D. 第二、三、四象限9一次函数y=-2x+1 的图象经过. A第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限10. 已知抛物线y=ax2+bx+c (a0 且 a、 b、 c 为常数)的对称轴为x=1, 且函数图象上有三点A(-1,y1)、 B(21,y2)、C(2,y3),则 y1、y2、y3的大小关系是. A.y3y1y2B. y2y3y1C. y3y2y1D. y1y30,化简二次根式2xyx的正确结果为 . A.yB.yC.-yD.-y2.化简二次根式21aaa的结果是. A.1aB.-1aC.1aD.1a3.若 ab,化简二次根式ab
23、a的结果是 . A.abB.-abC.abD.-ab4.若 ab,化简二次根式ababaa2)(的结果是. A.aB.-aC. aD.a5. 化简二次根式23)1(xx的结果是. A.xxx1B.xxx1C.xxx1D.1xxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 23 页6若 ab,化简二次根式ababaa2)(的结果是. A.aB.-aC. aD.a7已知 xy0,则yx2化简后的结果是. A.yxB.-yxC.yxD.yx8若 aa,化简二次根式a2ab的结果是. A.abaB.abaC.abaD.aba10化简二次根式
24、21aaa的结果是. A.1aB.-1aC.1aD.1a11若 ab-23B.k-23且 k3 C.k23且 k3 知识点 24:求点的坐标1已知点P 的坐标为 (2,2),PQ x 轴,且 PQ=2,则 Q 点的坐标是. A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4) 2如果点P 到 x 轴的距离为3,到 y 轴的距离为4,且点 P 在第四象限内,则 P 点的坐标为. A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3 过点 P(1,-2)作 x 轴的平行线l1,过点 Q(-4,3) 作 y 轴的平行线l2, l1、 l2相交于点
25、 A, 则点 A 的坐标是. A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4) 知识点 25:基本函数图像与性质1 若点 A(-1,y1)、 B(-41,y2)、 C(21,y3)在反比例函数y=xk(k0) 的图象上,则下列各式中不正确的是. A.y3y1y2B.y2+y30 C.y1+y30 D.y1?y3?y20 2在反比例函数 y=xm63的图象上有两点 A(x1,y1)、B(x2,y2),若 x20 x1 ,y12 B.m2 C.m0 3已知 :如图 ,过原点O 的直线交反比例函数y=x2的图象于A、B 两点 ,AC x 轴,AD y 轴, ABC 的面积为 S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 很好 2022年初三数学知识点总结【很好】 2022 年初 数学 知识点 总结
限制150内