人教版九年级数学上册22.1.4 第2课时《用待定系数法求二次函数的解析式》课件.ppt
《人教版九年级数学上册22.1.4 第2课时《用待定系数法求二次函数的解析式》课件.ppt》由会员分享,可在线阅读,更多相关《人教版九年级数学上册22.1.4 第2课时《用待定系数法求二次函数的解析式》课件.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十二章 二次函数,人教版九年级数学上册,22.1.4二次函数y=ax2+bx+c的 图象和性质,第2课时 用待定系数法求二次函数的解析式,1.会用待定系数法求二次函数的表达式.(难点) 2.会根据待定系数法解决关于二次函数的相关问题.(重点),导入新课,复习引入,1.一次函数y=kx+b(k0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?,2.求一次函数表达式的方法是什么?它的一般步骤是什么?,2个,2个,待定系数法,(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组) (4)还原:(写表达式),探究归纳,问题1 (1)二次函数y=ax2+bx+c(a0)中有几个
2、待定系数?需要几个抛物线上的点的坐标才能求出来?,3个,3个,(2)下面是我们用描点法画二次函数的图象所列表格的一部分:,讲授新课,解: 设这个二次函数的表达式是y=ax2+bx+c,把(-3,0),(-1,0),(0,-3)代入y=ax2+bx+c得,选取(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式.,解得,所求的二次函数的表达式是y=-x2-4x-3.,待定系数法 步骤: 1.设: (表达式) 2.代: (坐标代入) 3.解: 方程(组) 4.还原: (写解析式),这种已知三点求二次函数表达式的方法叫做一般式法. 其步骤是: 设函数表达式为y=ax2+bx+c; 代
3、入后得到一个三元一次方程组; 解方程组得到a,b,c的值; 把待定系数用数字换掉,写出函数表达式.,归纳总结,一般式法求二次函数表达式的方法,例1 一个二次函数的图象经过 (0, 1)、(2,4)、(3,10)三点,求这个二次函数的表达式.,解: 设这个二次函数的表达式是y=ax2+bx+c,由于这个函数经过点(0, 1),可得c=1. 又由于其图象经过(2,4)、(3,10)两点,可得,解这个方程组,得,所求的二次函数的表达式是,选取顶点(-2,1)和点(1,-8),试求出这个二次函数的表达式.,解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点(-2,1)代入y=a(x-h)2+k
4、得,y=a(x+2)2+1,,再把点(1,-8)代入上式得,a(1+2)2+1=-8,,解得 a=-1.,所求的二次函数的表达式是y=-(x+2)2+1或y=-x2-4x-3.,归纳总结,顶点法求二次函数的方法,这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是: 设函数表达式是y=a(x-h)2+k; 先代入顶点坐标,得到关于a的一元一次方程; 将另一点的坐标代入原方程求出a值; a用数值换掉,写出函数表达式.,例2 一个二次函数的图象经点 (0, 1),它的顶点坐标为(8,9),求这个二次函数的表达式.,解: 因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用待定系数法求二次函数的解析式 人教版九年级数学上册22.1.4 第2课时用待定系数法求二次函数的解析式课件 人教版 九年级 数学 上册 22.1 课时 待定系数法 二次 函数 解析 课件
限制150内