2022年运动目标图像的识别与跟踪 .pdf
《2022年运动目标图像的识别与跟踪 .pdf》由会员分享,可在线阅读,更多相关《2022年运动目标图像的识别与跟踪 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、运动目标图像的识别与跟踪本文主要目的是将视频摄像头中的运动目标从背景中提取出来,并加以跟踪。首先考虑的是常见的目标检测的算法,其次考虑对于噪声的滤除, 最后是对运动目标的跟踪。一、基本目标检测算法我们主要考虑的目标检测的算法主要有三种,光流场法、背景模型法以及时域差分法。1.1 光流场法光流主要是图像亮度模式的表现运动。而光流场则是指灰度模式的表面运动。一般条件下,我们可以根据图像的运动,进行估算相对运动。光流场法的基本理论是光流场基本方程:0tyxIvIuI(1.1) 式中我们根据亮度守恒, 利用泰勒公式展开, 忽略高阶项与二次项。 其中xI 、yI和tI 是图像在对数轴x、y 两个方向和
2、t 的的导数,vu,就是这个点的光流坐标。光流场法的目标检测, 在摄像机运动时候也可以做出判断,但是图像的噪声太过明显, 使得计算数据庞杂, 计算的公式更加复杂, 这样并不适合我们的对于目标跟踪的高精度的摄像系统。1.2 背景模型法背景模型法,也被称为背景差法,主要利用当前的图像和背景的图像的二值化做差,然后取阈值,分割运动目标。首先根据:yxbyxfyxDttt,(1.2) 我们可以得到当前的图像帧数yxft,和背景图像的帧数),(yxbt做差,然后以公式对图像进行二值化的处理。)(, 0)(, 1),(BackGroundTDForeGroundTDyxPttt(1.3) 上面),(yxP
3、t是二值化模板图。假设某一区域大于一个给定的面积的时候,该区域就是我们要找的目标区域。背景模型法的算法简单,可以快速反应,并且可以提供运动目标的大略特征等数据。但是对于复杂背景下,比如人流较大的公共场所,或者有光照等干扰时,就需以其他的算法以不断更新背景信息来进行弥补。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 7 页 - - - - - - - - - 相关的,还有背景统计模型法,在没有运动目标的前提下,建立背景的静态景观作为背景数据,然后根据前一帧数图像和以后的图
4、像进行实时比对,采集运动目标。现在最常用的描述背景点颜色分布的概率模型是高斯分布,并提出了自适应高斯混合背景模型,用以模拟背景。背景统计模型的方法是在数理统计方法之上,相比之下,和对整体的像素点利用同一阈值分割更加有效、合理。1.3 时域差分法该方法是指对一个非常小的时间间隔t (t 1s), 两幅图像根据这一时刻和上一时刻背景的比较,利用阈值化来进行筛选运动目标区域,提取运动目标。差分图像),(1yxD根据公式:),(),(),(11yxfyxfyxDtt(1.4)上式中,),(yxft是 t时刻的帧图像,),(yxftt则是t 以后的帧图像。接着,根据下面公式,对图像进行二值化:)(, 0
5、)(, 1),(BackGroundTDForeGroundTDyxPttt(1.5) ),(yxPt是二值模板图。 目标像素大于T时,该像素就是目标像素, 小于等于T时就一定为背景像素。时域分析法的计算速度快,对于运动目标的分析准确。虽然不能完全分析出运动目标所有的像素点,但是可以确定运动目标的方位。美中不足的是,它对于运动目标的位置检测不够精细,而且也有较多的噪点。二、针对本文对移动目标跟踪的方法在本文中,我们在针对移动目标的检测跟踪,首先截取一个静态的图像,作为背景,其次针对这一背景我们与下一时间段的所截取图像进行比较。如果有较大的变动,说明有移动物体出现。然后按照:灰度、中值滤波、二值
6、化、差值法、确定运动目标、求重心这一顺序来完成对运动目标的跟踪。2.1 RGB 图像的灰度化处理正常采集的图像都是彩色的图像,需要我们对彩色的图像灰度处理,能使得图像后期的处理更加简单。现在的图像采集方式所采集的开始是否有人开始录像获得一帧图像灰度图像中值滤波二值化计算重心发射信号YN差值处理红外热释电报警电路图 2.1 运动目标跟踪算法程序图名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 7 页 - - - - - - - - - 图像中的像素的颜色有绿色、红色和蓝色三
7、个分量。这三种颜色分别搭配组成各种各样的颜色。其中每个分量有255 种取值,相当于每个像素点上颜色的变化范围达到一千六百余万种。灰度图像是图像中比较特殊的一种,它的红绿蓝三个分量相同的特殊的彩色图像,像素点也只有255 种变化,变化范围大大变小,计算量也同时变小,方便我们后期其他的处理。所以我们一般进行数字图像处理的时候都要先将图像变为灰度图像。它不影响我们对图像整体特征的了解,因为其本身具有与彩色图像相同明暗特征,色度特征等。整体和局部的特征除了颜色,没有其他的变化。我们可以利用公式进行灰度化处理:),(*11.0),(*59.0),(*3 .0),(yxByxGyxRyxGray(2.1)
8、 上式,),(yx为图像中一个像素点的坐标,Gray所代表的的物理意义是点的亮度,也就是灰度。 R、G、B 分别代表红色绿色蓝色这三个颜色分量。图 2.2 是采集的原图像和灰度图像对比,4.2a图为采集到的原图, 4.2b 为经过灰度处理的图像。a 采集到的原图b 灰度处理后的图像图 4.2 采集到的原图与灰度图像对比2.2 图像的中值滤波处理在图像采集、录像摄影过程中,图像经常会受到各种噪声的干扰。体现为一些单独的小像素点,彩色图像或者灰度图像中,显示不明显,但是如果未经过滤波处理的图像,在二值化过程中就一定十分明显,会发现图像周围由于光线明暗、背景或者身体颜色的过渡形成一些孤立的像素点,也
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年运动目标图像的识别与跟踪 2022 运动 目标 图像 识别 跟踪
限制150内