2022年重积分及其应用 .pdf
《2022年重积分及其应用 .pdf》由会员分享,可在线阅读,更多相关《2022年重积分及其应用 .pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、重积分及其应用:DzDyDxzyxDyDxDDyDxDDDayxxdyxfaFayxydyxfFayxxdyxfFFFFFaaMzxoydyxxIydyxyIxdyxdyxyMMydyxdyxxMMxdxdyyzxzAyxfzrdrdrrfdxdyyxf23222232222322222D22)(),()(),()(),(,)0(),0,0(),(,),(),(),(,),(),(1),()sin,cos(),(,其中:的引力:轴上质点平面)对平面薄片(位于轴对于轴对于平面薄片的转动惯量:平面薄片的重心:的面积曲面柱面坐标和球面坐标:dvyxIdvzxIdvzyIdvxMdvzMzdvyMyd
2、vxMxdrrrFddddrdrrFdxdydzzyxfddrdrdrdrrddvrzryrxzrrfzrFdzrdrdzrFdxdydzzyxfzzryrxzyxr)()()(1,1,1sin),(sin),(),(sinsincossinsincossin),sin,cos(),(,),(),(,sincos222222200),(0222,转动惯量:,其中重心:,球面坐标:其中:柱面坐标:曲线积分:)()()()()(),(),(),(,)()(),(22tytxdtttttfdsyxfttytxLLyxfL特殊情况:则:的参数方程为:上连续,在设长的曲线积分):第一类曲线积分(对弧名师
3、资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 3 页 - - - - - - - - - 。,通常设的全微分,其中:才是二元函数时,在:二元函数的全微分求积注意方向相反!减去对此奇点的积分,应。注意奇点,如,且内具有一阶连续偏导数在,、是一个单连通区域;、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。上积分起止点处切向量分别为和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),()
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年重积分及其应用 2022 积分 及其 应用
限制150内