2022年整式的乘除与因式分解单元复习与巩固 .pdf
《2022年整式的乘除与因式分解单元复习与巩固 .pdf》由会员分享,可在线阅读,更多相关《2022年整式的乘除与因式分解单元复习与巩固 .pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 / 12 整式的乘除与因式分解单元复习与巩固撰 稿 : 徐 长 明审 稿 : 赵 云 洁责 编 : 孙 景 艳目标认知知识网络学习目标1、经历探索整式运算法则和因式分解方法的过程,体会数学知识之间的内在联系2、了解整数指数幂的意义和整数指数幂的运算性质;了解因式分解的意义及其与整式乘法之间的关系,体会事物之间可以相互转化的思想3、 会 进 行 简 单 的 整 式 乘 除 运 算 ; 会 用 提 公 因 式 法 、 公 式 法 进 行 因 式 分 解 4、会推导乘法公式:(a b)(a b)a2b2;(ab)2a22abb2;了解公式的几何背景,并能利用公式进行简单的计算及其逆向变形5、使学
2、生理解因式分解的意义并感受分解因式与整式乘法是相反方向的变形,让学生掌握什么是公因式,掌握提公因式(字母的指数是数字)和运用公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。重点:1 整式的乘除法;2 因式分解的两种基本方法. 难点:1 乘 法 公 式 的 灵 活 运 用 ;2 因 式 分 解 方 法 的 综 合 应 用 。知识要点梳理知识点一:幂的运算性质:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页2 / 12 1 、同底数幂的 乘法:amana
3、mn(m,n为正整数 );注: 此性质可以逆用,即amnaman。如:已知2a5,2b7,则 2ab2a2b5735。另外三个或三个以上同底数幂相乘时,也具有这一性质,即amanapamnp(m、n、p都是正整数) 2、幂的乘方:(am)namn(m,n为正整数);注: 注意不要把幂的乘方与同底数幂的乘法混淆,前者是指数相乘,后者是指数相加。3、积的乘方:(ab)nanbn(n为正整数);注:在积的乘方运算中很容易将底数中某一项或几项不乘方而出现错误,所以在进行积 的 乘 方 运 算 时 应 先 确 定 底 数 有 几 项 , 然 后 将 这 几 项 全 都 乘 方 , 再 将 结 果 相 乘
4、 。4 、 同 底 数 幂 的 除 法 : am an amn(a 0, m,n 为 正 整 数 , 并 且m n). 注:根据同底数幂除法的运算性质amanamn(a 0, m,n 为正整数,并且mn),当指数相同时,则有anananna01,从而诠释了“任何不等于0 的数的0 次幂都等于1”的道理,同时,又将同底数幂除法的运算性质中m n的条件扩大为m n;而当mn时,仍然使用amanamn,则 mn0,便出现了负指数幂ap ( a0, p 为正整数 );至此,同底数幂除法的运算性质amanamn的适用范围已不必再过分的强调m、n 之间的大小关系,m 、n的值也由正整数扩大到全体整数 了.
5、 知识点二:整式乘法主要指两种运算:1、单项式乘以单项式;注: 先确定符号,再计算绝对值这时容易出现的错误是将系数相乘与指数相加混淆,如 2a33a26a5,而不要认为是6a6或 5a5另外单项式乘法法则对于三个以上的单项式相乘同样适用2、多项式乘以单项式. 注: 运算时,要注意积的符号,多项式中的每一项前面的“”“”号是性质符号,单项式乘以多项式各项的结果,要用“”连结,最后写成省略加号的代数和的形式在多项式乘法中,通过实例得出了:含有一个相同字母的两个一次二项式相乘,得到的积是同一个字母的二次三项式. 如果用a,b 分别表示含有一个系数是1 的相同字母的两个 一 次 二 项 式 中 的 常
6、 数 项 , 则 有 公 式 : (x a)(x b) x2 (a b)x ab 。知识点三:整式的除法整式的除法是以同底数幂的除法为基础的,主要涉及单项式除以单项式,多项式除以单项式两种情况。运算法则是:1、单项式相除,把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式。注: 系数先相除,所得的结果作为商的系数,特别注意系数包括前面的性质符号 被 除 式 里 单 独 有 的 字 母 及 其 指 数 , 作 为 商 的 一 个 因 式 , 不 要 遗 漏 要注意运算的顺序,有乘方先算乘方,有括号先算括号里特别是同级运算一定要从左至右,如:,
7、而不是2、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 12 页3 / 12 加。注 : 多 项 式 除 以 单 项 式 所 得 商 的 项 数 与 这 个 多 项 式 的 项 数 相 同 用多项式的每一项除以单项式时,商中的每一项的符号由多项式中的每项的符号与单项式的符号共同确定知识点四:乘法公式:1、平方差公式:(ab)(ab)a2b2;2 、 完 全 平 方 公 式 : (a b)2 a2 2ab b2; (a b)2 a2 2ab b2. 注 : ( ) 应
8、 用 乘 法 公 式 时 , 应 避 免 出 现 以 下 错 误 , 如,等等; ( )注意乘法公式的灵活正用和逆用问题知识点五:因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解. 初中数学教材中主要介绍的因式分解的方法有: 提公因式法 , 公式法 , 分组分解法 , 十字相乘法,添、拆项法等。要点诠释:(1) 因 式 分 解 的 对 象 是 多 项 式 , 因 式 分 解 的 结 果 一 定 是 整 式 乘 积 的 形 式 ;(2) 因式分解的一般步骤是:首先看有无公因式,然后判断是否可以套用公式,最后考虑分组分解。分解因式必须进行到每一个因式都不能再分解
9、为止,一般情况是,最后结果只有小括号并且每个小括号 中多 项 式首项 系 数为 正。例 如:-3x2+x=-x(3x-1) (3) 提公因式法的关键是确定公因式。即取各项系数的最大公约数字母取各项的相同的字母各相同字母的指数取次数最低的;(4) 运 用 公 式 法 时 要 注 意 判 断 是 否 符 合 公 式 要 求 , 并 牢 记 公 式 的 特 征 ;(5) 分组分解的关键是适当分组,先使分组后各组中能分解因式,再使因式分解能在各组之间进行。规律方法指导1、整式的乘法与因式分解在意义上正好相反,结果的特征是因式分解是积的形式,整式的乘法是和的形式 , 抓 住 这 一 特 征 , 就 不
10、容 易 混 淆 因 式 分 解 与 整 式 的 乘 法 . 2、分解因式的一般步骤是先提取公因式,然后再利用公式。在提取公因式的过程中有很多情况应该先将所给的多项式中的某一部分进行变形,然后才能提取公因式或者利用公式进行分解因式。常用的变形公式是:和 (n 为正整数 ),即当次精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 12 页4 / 12 数是偶数时,可以随意改变括号里面的减数和被减数的位置,当次数是奇数时,在改变减数和被减数的位置之后,应该在括号的前面加一个负号。3、在本章中多次运用转化与化归的思想方法,例如单项式乘以单项式可以
11、转化为有理数乘法和同底数幂的乘法运算;单项式乘以多项式以及多项式乘以多项式都可以转化为单项式乘以单项式。4、整体代换的思想方法在乘法公式中表现的特别典型,公式中的字母不仅可以代表数,而且可以表示代数式。正是由于整体代换的思想,乘法公式才能得到广泛的应用。再比如,在研究多项式乘多项式法则时,是把看成一个整体,运用单项式乘以多项式的法则,得到然后再运用“单多”的运算法则即可得到。在分解因式时,可以把看成一个整体 ,提公因式,即原式 =。5、本章所学的公式和法则都是既可正向运用又可逆向运用的。进行整式乘法运算时,逆用公式可使计算简便。例如:。学会就变式运用或逆用乘法公式,也能使运算简便。例如:计算:
12、。经 典例 题 透 析类 型 一 : 幂 的 运 算 性 质 的 有 关 运 算 :1 计 算 :(1) 、 103 104;(2) 、 a a3;(3) 、 a a3 a5(4)、(103)5;(5)、(b3)4(6)、(2b)3;(7) 、(2 a3)2;(8) 、(a)3;(9)、( 3x)4思路点拨: (1)(2)(3) 题为同底数幂的乘法,法则是底数不变指数相加。(4) (5)题为幂的乘方,法则是底数不变,指数相乘。(6), (7), (8),( 9)题为积的乘方,法则是积中每个因 式 分 别 乘 方 再 把 所 得 的 幂 相 乘 , 并 注 意 (7) (8) 中 的 “ ” 不
13、 要 漏 掉 。解读:(1)、1031041034107(2)、aa3a13a4精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页5 / 12 (3)、aa3a5a4a5a9(4)、(103)510351015(5)、(b3)4b34b12(6)、(2b)323b38b3(7)、(2a3)222(a3)24a6(8)、(a)3(1)3a3a3(9)、(3x)4(3)4x481x4总结升华:在进行幂的有关运算时,应先确定该运算是何种运算,再运用该运算的法则进行计算。 (5)题 (b3)4先确定该运算是幂的乘方,再根据幂的乘方,底数不
14、变,指数相乘得(b3)4b34 b12幂 的 有 关 运 算 要 求 透 彻 理 解 法 则 的 实 质 , 在 练 习 中 多 体 会 和 总 结 。举一反三:【 变 式1 】 下 面 的 计 算 是 否 正 确 ? 如 有 错 误 , 请 改 正 过 来 。(1). (a)2a2;(2). (xy)3(yx)3;(3). a3a32a3(4). b4b4b8(5). (a4)4a44a8(6). (2x)32x3;思路点拨:(1),(2),题错在符号上,在本章计算中,自始至终要注意符号(3),(4),(5)两题的错误表现为概念不清,算理不清,法则混淆。(3)题为同底数幂的乘法,法则为底数不
15、变指数相加。(4)题为合并同类项,法则是系数相加,字母和字母的指数不变。(5)题为幂的乘方,法则是指数相乘。(6)题是错误的,(2x)应看作一个整体,题中没有把系数 2 进 行3 次 运 算 , 对 积 的 乘 方 性 质 没 有 理 解 , 也 没 有 注 意 符 号 .解 读 :(1)错误。改正(a)2a2(2)错误。改正(xy)3(yx)3(3)错误。改正a3a3a33a6(4)错误。改正b4b42b4(5)错误。改正(a4)4a44a16(6)错误。改正(2x)38x3;【变式2 】计算答案:【变式3】若是正整数,且,(1)求满足条件的共有多少对?(2)根据条件能否快速判断出的计算结果
16、?答案:(1) 是正整数,且满足条件的有(1,4)(2,3)(3,2)(4,1),共4对. (2) 能. 当时,类型二:整式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页6 / 12 乘 除 的 有 关 运 算 :2 下 列 运 算 是 否 正 确 , 如 有 错 误 请 改 正 过 来 。(1) 、 ( a2b)3 ( 4ab2)2 ( 4) (a2b) (ab2) 2a3b3. (2) 、 ( 3x2)(2x3 x2 1) ( 3x2) 2x3( 3x2) x2 6x5 3x4. (3)、(4) 、(3x 2y)(4x 7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年整式的乘除与因式分解单元复习与巩固 2022 整式 乘除 因式分解 单元 复习 巩固
限制150内