《高考全国1卷理科数学试题和答案.docx》由会员分享,可在线阅读,更多相关《高考全国1卷理科数学试题和答案.docx(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、_. .6,2019 年全国统一高考数学试卷 (理科 )(新课标)第 I 卷(选择题)一、单选题1 已知集合2M x 4 x 2 ,N x x x 6 0 ,则 M N =A x 4 x 3 B x 4 x 2 C x 2 x 2 D x 2 x 32 设复数 z 满足 z i =1,z 在复平面内对应的点为 (x,y),则A2 2( x+1) y 1 B2 2(x 1) y 1 C2 ( 1)2 1x y D2 ( y+1)2 1x3已知0.2 0.3a log 0.2, b 2 ,c 0.2 ,则2A a b c B a c b C c a b D b c a4 古希腊时期,人们认为最美人
2、体的头顶至肚脐的长度与肚脐至足底的长度之比是5 12(5 12 0.618 , 称为黄金分割比例 ), 著名的 “断臂维纳斯”便是如此 此外 , 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 5 12若某人满足上述两个黄金分割比例 , 且腿长为 105cm , 头顶至脖子下端的长度为 26 cm , 则其身高可能是A165 cm B175 cm C185 cm D190cm5函数 f(x)=sincosx x2x x在 ,的 图像大致为eord 完美格式1_. .A BC D6 我国古代典籍 周易 用“卦”描述万物的变化 每一 “重卦 ”由从下到上排列的 6 个爻组成, 爻分为阳爻 “
3、”和阴爻 “”,如图就是一重卦 在所有重卦中随机取一重卦 ,则该重卦恰有 3 个阳爻的概率是A516B1132C2132D11167 已知非零向量 a,b 满足 a = 2 b ,且(ab) b,则 a 与 b 的夹角为A6B3C23D5618 如图是求22112的程序框图 , 图中空白框中应填入AA=12 ABA= 21ACA=11 2ADA=112Aeord 完美格式. .9记Sn 为等差数列an 的前 n 项和已知 S4 0,a5 5 ,则A an 2n 5 B an 3n 10 C2S 2n 8n Dn12S n 2nn210已知椭圆C 的焦点为 F1( 1,0 ) , F2( 1,0
4、) ,过F2 的直线与C 交于 A,B 两点 .若AF2 2F2B, AB BF1 ,则 C 的方程为A2x22 1y B2 2x y3 21C2 2x y4 31D2 2x y5 4111 关于函数 f (x) sin | x| | sin x |有下述四个结论 :f(x)是偶函数 f(x)在区间( , )单调递增2f(x)在 , 有 4 个零点 f(x)的最大值为 2其中所有正确结论的编号是A B C D12 已知三棱锥P-ABC的四个顶点在球 O 的球面上 ,PA=PB= PC, ABC 是边长为 2 的正三角形 ,E,F分别是 PA,PB的中点 ,CEF=90 ,则球 O 的体积为A
5、8 6 B 4 6 C 2 6 D 6第 II 卷(非选择题)13曲线2 xy x x 在点 (0,0) 处的切线方程为 _3( )e14记Sn 为等比数列an的前 n 项和若12a , a a ,则 S5=_1 4 6315 甲、 乙两队进行篮球决赛 , 采取七场四胜制( 当一队赢得四场胜利时,该队获胜 ,决赛结束) 根据前期比赛成绩,甲队的主客场安排依次为 “主主客客主客主 ”设甲队主场取胜的概率为 0.6, 客场取胜的概率为 0.5, 且各场比赛结果相互独立, 则甲队以41获胜的概率是 _eord 完美格式. .16 已知双曲线 C:2 2x y 2 2 1(a 0,b 0)a b的左
6、、 右焦点分别为 F1,F2,过 F1 的直线与 C的两条渐近线分别交于 A,B 两点 若F A AB , F1B F2B 0,则 C 的离心率为1_17V ABC 的内角 A,B,C 的对边分别为 a,b,c,设2 2(sin B sin C) sin A sin B sinC (1)求 A;(2)若 2a b 2c ,求 sinC18如图 ,直四棱柱 ABCDA1B1C1D1 的底面是菱形 ,AA1=4 ,AB=2 ,BAD=60 ,E,M,N 分别是 BC,BB1,A1D 的中点 (1)证明:MN 平面 C1DE;(2) 求二面角 A-MA 1-N 的正弦值 19 已知抛物线 C:y2=
7、3 x 的焦点为 F, 斜率为32的直线 l 与 C的交点为 A,B,与 x 轴的交点为 P(1)若|AF|+| BF|=4 ,求 l 的方程 ;(2)若 AP 3PB,求|AB|20 已知函数 f (x) sin x ln(1 x) , f (x)为 f (x) 的导数 证明 :eord 完美格式. .(1) f (x) 在区间 ( 1, )2存在唯一极大值点 ;(2) f (x) 有且仅有 2 个零点 21 为了治疗某种疾病 ,研制了甲 、乙两种新药 , 希望知道哪种新药更有效 , 为此进行动物试验 试验方案如下 :每一轮选取两只白鼠对药效进行对比试验 对于两只白鼠 ,随机选一只施以甲药
8、, 另一只施以乙药 一轮的治疗结果得出后 ,再安排下一轮试验 当其中一种药治愈的白鼠比另一种药治愈的白鼠多 4 只时 ,就停止试验 ,并认为治愈只数多的药更有效 为了方便描述问题 ,约定 :对于每轮试验 ,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得 1 分 ,乙药得 1分 ; 若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得 1 分,甲药得 1分 ; 若都治愈或都未治愈则两种药均得 0 分 甲、 乙两种药的治愈率分别记为 和 , 一轮试验中甲药的得分记为 X(1)求 X 的分布列 ;(2) 若甲药 、 乙药在试验开始时都赋予 4 分, pi (i 0,1, ,8) 表示 “甲药的累计
9、得分为 i时, 最终认为甲药比乙药更有效 ”的概率 ,则 p0 0 , p8 1,p ap bp cp (i 1,2, ,7) ,其中 a P(X 1) ,b P(X 0) ,i i 1 i i 1c P X 假设 0.5, 0.8 ( 1)(i)证明 : pi 1 pi (i 0,1,2, ,7) 为等比数列 ;(ii)求 p4 , 并根据 p4 的值解释这种试验方案的合理性 22选修 4-4 : 坐标系与参数方程 在直角坐标系 xOy 中 ,曲线 C 的参数方程为221 t1 t 4tx,( 为参数 ), 以坐标原点 t Oy21t为极点 ,x 轴的正半轴为极轴建立极坐标系 ,直线 l 的
10、极坐标方程为2 cos 3 sin 11 0eord 完美格式. .(1)求 C 和 l 的直角坐标方程 ;(2)求 C 上的点到 l 距离的最小值 23选修 4-5 : 不等式选讲 已知 a,b,c 为正数 , 且满足 abc=1 证明 :(1)1 1 1a b c2 2 2a b c;(2)3 3 3(a b) (b c) (c a) 24参考答案1C【解析 】【分析 】本题考查集合的交集和一元二次不等式的解法 , 渗透了数学运算素养 采取数轴法 ,利用数形结合的思想解题 【详解 】由题意得 ,M x 4 x 2 , N x 2 x 3 ,则M N x 2 x 2 故选 C【点睛 】不能领
11、会交集的含义易致误 , 区分交集与并集的不同 , 交集取公共部分 , 并集包括二者部分2C【解析 】【分析 】本题考点为复数的运算 , 为基础题目 , 难度偏易 此题可采用几何法 , 根据点 (x,y)和eord 完美格式. .点(0,1)之间的距离为 1, 可选正确答案 C【详解 】z x yi, z i x ( y 1)i ,2 ( 1)2 1,z i x y 则2 ( 1)2 1x y 故选 C【点睛 】本题考查复数的几何意义和模的运算 , 渗透了直观想象和数学运算素养 采取公式法或几何法 , 利用方程思想解题 3B【解析 】【分析 】运用中间量 0 比较 a , c, 运用中间量 1比
12、较 b , c【详解 】alog 0.2 log 1 0,2 2b0.2 02 2 1,0.3 00 0.2 0.2 1,则0 c 1,a c b 故选 B【点睛 】本题考查指数和对数大小的比较 , 渗透了直观想象和数学运算素养 采取中间变量法 ,利用转化与化归思想解题 4B【解析 】【分析 】理解黄金分割比例的含义 , 应用比例式列方程求解 【详解 】设人体脖子下端至肚脐的长为 x cm ,肚脐至腿根的长为 y cm ,则eord 完美格式. .26 26 x 5 1x y 105 2,得 x 42.07 cm, y 5.15cm 又其腿长为 105cm , 头顶至脖子下端的长度为 26cm
13、 , 所以其身高约为 4207+5 15+105+26=178 22,接近175cm 故选 B【点睛 】本题考查类比归纳与合情推理 ,渗透了逻辑推理和数学运算素养 采取类比法 , 利用转化思想解题 5D【解析 】【分析 】先判断函数的奇偶性 ,得 f (x) 是奇函数 ,排除 A, 再注意到选项的区别 , 利用特殊值得正确答案 【详解 】sin( x) ( x) sin x x由 2 2f ( x) f (x)cos( x) ( x) cos x x,得 f ( x) 是奇函数 , 其图象关于原点对称 又f1 2 4 2( ) 1,22 ( )22f ( ) 0 故选 D21【点睛 】本题考查
14、函数的性质与图象 , 渗透了逻辑推理 、 直观想象和数学运算素养 采取性质法或赋值法 , 利用数形结合思想解题 6A【解析 】【分析 】eord 完美格式. .本题主要考查利用两个计数原理与排列组合计算古典概型问题 , 渗透了传统文化 、 数学计算等数学素养 ,“重卦 ”中每一爻有两种情况 , 基本事件计算是住店问题 , 该重卦恰有 3 个阳爻是相同元素的排列问题 , 利用直接法即可计算 【详解 】由题知 , 每一爻有 2 中情况 , 一重卦的 6 爻有 26 情况 ,其中 6 爻中恰有 3 个阳爻情况有3C , 所以该重卦恰有 3 个阳爻的概率为63C662=516,故选 A【点睛 】对利用
15、排列组合计算古典概型问题 , 首先要分析元素是否可重复 , 其次要分析是排列问题还是组合问题 本题是重复元素的排列问题 , 所以基本事件的计算是 “住店 ”问题,满足条件事件的计算是相同元素的排列问题即为组合问题 7B【解析 】【分析 】本题主要考查利用平面向量数量积计算向量长度 、 夹角与垂直问题 , 渗透了转化与化归 、数学计算等数学素养 先由 (a b) b 得出向量 a,b 的数量积与其模的关系 , 再利用向量夹角公式即可计算出向量夹角 【详解 】因为 (a b) b ,所以2(a b) b a b b =0 ,所以 a b b2 ,所以cos =2a b | b | 12a b 2
16、|b | 2,所以 a 与b的夹角为,故选 B3【点睛 】对向量夹角的计算 ,先计算出向量的数量积及各个向量的摸 , 在利用向量夹角公式求出夹eord 完美格式. .角的余弦值 , 再求出夹角 , 注意向量夹角范围为 0, 8A【解析 】【分析 】本题主要考查算法中的程序框图 , 渗透阅读 、 分析与解决问题等素养 , 认真分析式子结构特征与程序框图结构 , 即可找出作出选择 【详解 】1A ,k 1 2 是 , 因为第一次应该计算221121=12 A , k k 1=2 ,循执行第 1 次,环, 执行第 2 次, k 2 2, 是 ,因为第二次应该计算22112=12 A,1k k 1=3
17、 , 循环 ,执行第 3 次,k 2 2,否,输出 ,故循环体为A,故选2 AA【点睛 】1 秒杀速解 认真观察计算式子的结构特点 , 可知循环体为 A2 A9A【解析 】【分析 】等差数列通项公式与前 n 项和公式 本题还可用排除 ,对 B,a5 5 ,4( 7 2)S 10 0 ,排除 B,对 C,422S4 0, a5 S5 S4 2 5 8 5 0 10 5 ,排除 C对 D,1 52S 0,a S S 5 2 5 0 5 ,排除 D,故选 A4 5 5 42 2【详解 】eord 完美格式. .由题知 ,dS 4a 4 3 04 12a a 4d 55 1,解得a1 3d 2,an
18、2n 5,故选 A【点睛 】本题主要考查等差数列通项公式与前 n 项和公式 , 渗透方程思想与数学计算等素养 利用等差数列通项公式与前 n 项公式即可列出关于首项与公差的方程 , 解出首项与公差 ,在适当计算即可做了判断 10B【解析 】【分析 】由已知可设 F2 B n ,则 AF2 2n , BF1 AB 3n,得 AF1 2n ,在AF1B 中求1cosF AB ,再在 AF1F2 中 , 由余弦定理得 3得 1 n , 从而可求解 .3 2【详解 】法一 :如图 ,由已知可设 F2B n,则 AF2 2n, BF1 AB 3n ,由椭圆的定义有2a BF BF 4n, AF 2a AF
19、 2n在AF1B 中 , 由余弦定理推论得1 2 1 2cosF AB12 2 24n 9n 9n 12 2n 3n 3在AF1F2 中 , 由余弦定理得2 2 14n 4n 2 2n 2n 4 ,解得33n 22 2 22a 4n 2 3 , a 3 , b a c 3 1 2 , 所求椭圆方程为2 2x y3 21,故选 B法二 :由已知可设 F2B n,则 AF2 2n , BF1 AB 3n, 由椭圆的定义有2a BF BF 4n, AF 2a AF 2n在AF1F2 和BF1F2 中 ,由余弦定理1 2 1 2eord 完美格式. .得2 24n 4 2 2n 2 cos AF F
20、4n ,2 12 2n 4 2 n 2 cos BF F 9n2 1,又 AF2F1 , BF2F1 互补 ,cos AF F cos BF F 0 ,两式消去 cos AF2 F1 , cos BF2F1,得2 1 2 12 23n 6 11n ,解得3n 22 2 22a 4n 2 3 , a 3 , b a c 3 1 2 , 所求椭圆方程为2 2x y3 21,故选 B【点睛 】本题考查椭圆标准方程及其简单性质 , 考查数形结合思想 、 转化与化归的能力 ,很好的落实了直观想象 、逻辑推理等数学素养 11C【解析 】【分析 】化简函数 f x sin x sin x , 研究它的性质从
21、而得出正确答案 【详解 】f x sin x sin x sin x sin x f x , f x 为偶函数 ,故正确 当2x 时, f x 2sin x,它在区间 , 2单调递减 ,故错误 当 0 x时, f x 2sin x, 它有两个零点 : 0 ;当 x 0时,eord 完美格式. .f x sin x sin x 2sin x, 它有一个零点 : ,故 f x 在 , 有3个零点: 0 ,故错误 当 x 2k , 2k k N 时, f x 2sin x;当x k k k N 时, f x sin x sin x 0,又 f x 为偶函数 ,2 , 2 2f x 的最大值为 2,
22、故正确 综上所述 , 正确 ,故选 C【点睛 】画出函数 f x sin x sin x 的图象 , 由图象可得 正确 ,故选 C12D【解析 】【分析 】先证得 PB 平面 PAC, 再求得 PA PB PC 2 , 从而得 P ABC 为正方体一部分 , 进而知正方体的体对角线即为球直径 , 从而得解 .【详解 】解法一 : PA PB PC, ABC 为边长为 2 的等边三角形 , P ABC 为正三棱锥 ,PB AC ,又 E , F 分别为 PA、 AB 中点,EF PB, EF AC ,又 EF CE ,CE AC C, EF 平面 PAC ,/ /PB 平面 PAC , PAB
23、PA PB PC 2 , P ABC 为正方体一部分, 2R 2 2 2 6 ,即6 4 4 6 63R , V R 6 ,故选 D2 3 3 8eord 完美格式. .解法二 :设 PA PB PC 2x, E,F 分别为 PA, AB 中点,EF / /PB,且1EF PB x , ABC 为边长为 2 的等边三角形 ,2CF 又 CEF 9032 1CE 3 x , AE PA x2AEC中余弦定理cos EAC2 4 3 2x x2 2 x,作 PD AC 于 D , PA PC ,Q D 为 AC 中点 ,cosEACAD 1PA 2x,2 4 3 2 1x x4x 2x,2 2 1
24、 22 1 2x x x , PA PB PC 2 ,又 AB=BC =AC=2 ,2 2PA , PB , PC 两两垂直 , 2R 2 2 2 6 , 6R , 24 4 6 63V R 6 ,故选 D.3 3 8eord 完美格式. .【点睛 】本题考查学生空间想象能力 , 补体法解决外接球问题 可通过线面垂直定理 , 得到三棱两两互相垂直关系 , 快速得到侧棱长 , 进而补体成正方体解决 133x y 0 .【解析 】【分析 】本题根据导数的几何意义 , 通过求导数 ,确定得到切线的斜率 , 利用直线方程的点斜式求得切线方程【详解 】详解:/ 3(2 1) x 3( 2 ) x 3(
25、2 3 1) x ,y x e x x e x x e所以,/k y|x 30所以 ,曲线2 xy x x 在点 (0,0) 处的切线方程为 y 3x ,即3x y 0 3( )e【点睛 】准确求导数是进一步计算的基础 , 本题易因为导数的运算法则掌握不熟 , 二导致计算错误 求导要 “慢 ”,计算要准 , 是解答此类问题的基本要求 141213.【解析 】【分析 】本题根据已知条件 ,列出关于等比数列公比 q的方程 , 应用等比数列的求和公式 , 计算得到 S5 题目的难度不大 , 注重了基础知识 、基本计算能力的考查 【详解 】设等比数列的公比为 q, 由已知12a ,a a ,所以1 4
26、 631 13 2 5( ) , 3 3q q 又q 0,eord 完美格式. .所以 q 3,所以S5155(1 3 )a q(1 ) 3 12111 q 1 3 3【点睛 】准确计算 , 是解答此类问题的基本要求 本题由于涉及幂的乘方运算 、 繁分式分式计算, 部分考生易出现运算错误 150.216.【解析 】【分析 】本题应注意分情况讨论 , 即前五场甲队获胜的两种情况 , 应用独立事件的概率的计算公式求解 题目有一定的难度 , 注重了基础知识 、基本计算能力及分类讨论思想的考查 【详解 】前四场中有一场客场输 , 第五场赢时 , 甲队以 4:1 获胜的概率是30.6 0.5 0.5 2
27、 0.108,前四场中有一场主场输 , 第五场赢时 , 甲队以 4:1 获胜的概率是2 20.4 0.6 0.5 2 0.072,综上所述 ,甲队以 4:1 获胜的概率是 q 0.108 0.072 0.18.【点睛 】由于本题题干较长 ,所以 , 易错点之一就是能否静心读题 ,正确理解题意 ; 易错点之二是思维的全面性是否具备 , 要考虑甲队以 4:1 获胜的两种情况 ; 易错点之三是是否能够准确计算162.【解析 】eord 完美格式. .【分析 】通过向量关系得到 F1 A AB 和OA F1A ,得到 AOB AOF1 , 结合双曲线的渐近线可得 BOF2 AOF1,0BOF2 AOF
28、1 BOA 60 ,从而由ba0tan 60 3可求离心率 .【详解 】如图,由 F1 A AB,得 F1 A AB.又OF1 OF2 ,得 OA 是三角形 F1F2B 的中位线 ,即BF2 / / OA, BF2 2OA.由F1B F2B 0,得 F1B F2 B,OA F1 A, 则OB OF1 有AOB AOF ,1又 OA 与 OB 都是渐近线 ,得 BOF2 AOF1, 又 BOF2 AOB AOF1 ,得0BOF2 AOF1 BOA 60 ,又渐近线 OB 的斜率为ba0tan 60 3,所以该双曲线的离心率为ec b2 2 1 ( ) 1 ( 3) 2a a【点睛 】本题考查平面
29、向量结合双曲线的渐进线和离心率 , 渗透了逻辑推理 、 直观想象和数学运算素养 采取几何法 ,利用数形结合思想解题 17(1)A ;( 2)3sin6 2C .4【解析 】eord 完美格式. .【分析 】(1)利用正弦定理化简已知边角关系式可得 :2 2 2b c a bc , 从而可整理出 cosA,根据 A 0, 可求得结果 ;(2) 利用正弦定理可得 2 sin A sin B 2sin C ,利用sin B sin A C 、两角和差正弦公式可得关于 sin C 和cosC 的方程 , 结合同角三角函数关系解方程可求得结果 .【详解 】(1)2 2 2 2sin B sin C si
30、n B 2sin B sin C sin C sin A sin B sinC即:2 2 2sin B sin C sin A sin B sin C由正弦定理可得 :2 2 2b c a bccos A2 2 2 1b c a2bc 2A 0, A=3(2) 2a b 2c , 由正弦定理得 : 2 sin A sin B 2sin C又 sin B sin A C sin A cosC cosAsin C , A33 3 12 cosC sin C 2sin C2 2 2整理可得 :3sinC 6 3cosC2 2sin C cos C 1223si nC 6 3 1 siCn解得:sin
31、6 2C 或46 24因为6sin B 2sin C 2 sin A 2sin C 0所以2sin6C ,故4sin6 2C .4(2)法二 : 2a b 2c , 由正弦定理得 : 2 sin A sin B 2sin C又 sin B sin A C sin A cosC cosAsin C , A3eord 完美格式. .3 3 12 cosC sin C 2sin C2 2 2整理可得 :3sinC 6 3cosC ,即3sin 3 cos 2 3 sin 6C C C 6sin C26 2由2C (0, ),C ( , ) ,所以 C ,C 3 6 6 2 6 4 4 66 2sin
32、 C sin( ) .4 6 4【点睛 】本题考查利用正弦定理 、 余弦定理解三角形的问题 , 涉及到两角和差正弦公式 、同角三角函数关系的应用 , 解题关键是能够利用正弦定理对边角关系式进行化简 , 得到余弦定理的形式或角之间的关系 .18(1) 见解析 ;(2)105.【解析 】【分析 】(1) 利用三角形中位线和 A1D/ /B1C可证得 ME/ /ND, 证得四边形 MNDE 为平行四边形, 进而证得 MN / /DE ,根据线面平行判定定理可证得结论 ;( 2)以菱形 ABCD对角线交点为原点可建立空间直角坐标系 , 通过取 AB中点 F , 可证得 DF 平面 AMA1 ,得uur
33、u ; 再通过向量法求得平面 MA1N 的法向量 n , 利用向量夹角公到平面 AMA1 的法向量 DF式求得两个法向量夹角的余弦值 , 进而可求得所求二面角的正弦值 .【详解 】(1)连接 ME , B1Ceord 完美格式. .M , E分别为 BB1 , BC 中点 ME为B BC 的中位线1ME/ /BC且11ME B C12又 N 为 A1D 中点 ,且 A1D/ /B1C ND/ /B1C且1ND B C12ME/ /ND 四边形 MNDE 为平行四边形MN / /DE ,又 MN 平面 C1DE , DE 平面 C1DEMN / / 平面 C1DE(2)设 AC BD O, A1
34、C1 B1D1 O1由直四棱柱性质可知 :OO1 平面 ABCD四边形 ABCD为菱形 ACBD则以 O为原点 ,可建立如下图所示的空间直角坐标系 :则: A 3,0,0 ,M 0,1,2 ,A1 3,0, 4 ,D(0,-1,0 )N3 1, ,22 2 3 1取 AB 中点 F ,连接 DF ,则 F , ,0 2 2eord 完美格式. .四边形 ABCD为菱形且 BAD 60 BAD为等边三角形 DF AB又 AA1 平面 ABCD, DF 平面 ABCD DF AA1DF 平面 ABB1A1 ,即 DF 平面 AMA1DF 为平面 AMA1 的一个法向量 ,且DF3 3, ,02 2
35、设平面 MA1N 的法向量 n x, y,z ,又MA1 3, 1,2 , MN3 3, ,02 2n MA1 3x y 2z 03 3n MN x y2 20,令 x 3 ,则 y 1 , z 1 n 3 , 1, 1cos DF, nDF nDF n3 1515 5sin DF ,n105二面角 A MA1 N 的正弦值为 : 105【点睛 】本题考查线面平行关系的证明 、空间向量法求解二面角的问题 .求解二面角的关键是能够利用垂直关系建立空间直角坐标系 , 从而通过求解法向量夹角的余弦值来得到二面角的正弦值, 属于常规题型 .19(1)12 x 8 y 7 0 ;( 2) 4 133.【
36、解析 】【分析 】(1) 设直线 l :3y = x m2, A x1, y1 , B x2 ,y2 ;根据抛物线焦半径公式可得x + x ; 联立直线方程与抛物线方程 , 利用韦达定理可构造关于 m 的方程 , 解方程求1 2 1得结果 ;(2) 设直线 l :2x y t ; 联立直线方程与抛物线方程 , 得到韦达定理的形3式; 利用 AP 3PB 可得 y1 3y2 , 结合韦达定理可求得 y1 y2 ; 根据弦长公式可求得结eord 完美格式. .果.【详解 】(1) 设直线 l 方程为 :3y = x m 2, A x1,y1 , B x2, y23由抛物线焦半径公式可知 : 1 2
37、AF BF x x 4 x1 x2252联立3y x m 22y 3x得:2 29x 12m 12 x 4m 0则2 212m 12 144m 0m1212 m 12 5x x ,解得:1 29 2m78直线 l 的方程为 :3 7y x ,即:12 x 8 y 7 02 8(2)设 P t,0 , 则可设直线 l 方程为 :2x y t 3联立2x y t 32y 3x得:2 2 3 0y y t则 4 12t 0t13y1 y2 2, y1y2 3tAP PB y1 3y2 y2 1,3y y1y2 31 3则4 13 4 132AB 1 y y 4y y 4 121 2 1 29 3 3
38、【点睛 】本题考查抛物线的几何性质 、 直线与抛物线的综合应用问题 , 涉及到平面向量 、弦长公式的应用 .关键是能够通过直线与抛物线方程的联立 , 通过韦达定理构造等量关系 .20(1) 见解析 ;(2) 见解析【解析 】【分析 】eord 完美格式. .(1) 求得导函数后 , 可判断出导函数在 1,2上单调递减 ,根据零点存在定理可判断出x0 0, ,使得 g x0 0, 进而得到导函数在 1,22上的单调性 , 从而可证得结骣p论;( 2)由 (1) 的结论可知 x 0为 f x 在 1,0 上的唯一零点 ;当 0,? x西?桫 时,首2先可判断出在 ( )0,x 上无零点 , 再利用
39、零点存在定理得到 f x 在 x0, 上的单调性 ,02可知 f x 0, 不存在零点 ;当 x , 时 , 利用零点存在定理和 f x 单调性可判断2出存在唯一一个零点 ;当 x , , 可证得 f x 0; 综合上述情况可证得结论 .【详解 】(1) 由题意知 : f x 定义域为 : 1, 且f x cos xx111g x cos x , x 1, 令x 121g x sin x, x 1, 2x 12112在 1,2上单调递减 ,1 1 1a an 1 n7,在 1,2上单调递减xg x 在 1,2上单调递减又 g 0 sin0 1 1 0 ,g4 4sin 1 02 22 2 2 2x0 0, ,使得 g x0 0 2当 x 1, x0 时, g x 0 ; x x0 , 时, g x 02即 g x 在1,x 上单调递增 ;在 x0, 上单调递减02eord 完美格式. .则 x x0 为 g x 唯一的极大值点即: f x 在区间 1,2上存在唯一的极大值点 x0 .1f x cos x , x 1,(2)由(1)知:x 1当 x 1,0 时, 由(1)可知 f x 在 1,0 上单调递增
限制150内