人教A版高中数学选修2—2《数学归纳法》说课设计.doc
《人教A版高中数学选修2—2《数学归纳法》说课设计.doc》由会员分享,可在线阅读,更多相关《人教A版高中数学选修2—2《数学归纳法》说课设计.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教A版高中数学选修22数学归纳法说课设计数学归纳法说课设计数学归纳法说课设计课题数学归纳法作者说课过程具体内容设计意图及时间分配说教材说课内容人教版普通高中课程标准实验教科书数学选修22第二章推理与证明第三节数学归纳法教材分析 数学归纳法是数学中重要而基本的方法但对初学这一内容的学生而言,却是一个陌生的课题理解数学归纳法的无穷递推的实质,就成为教学的关键教材通过类比多米诺骨牌效应,得到数学归纳法的证明方法但本人认为有两方面的不足:一是这样的处理看似自然,但没有处理好“数学归纳法怎么发生?”这个问题;二是这样的处理易使学生的证明流于形式,出现“伪数学归纳法”学情分析 本课的对象为高二学生,在初
2、中阶段及本章第一节,已经对归纳法有较深入的认识,也接触过大量的证明而数学归纳法却完全不同,学生也许从来没有想过可以这样来说明一件事的真实性这也叫“证明”吗?为什么证明了“两个步骤”就可以断言命题对一切自然数都成立呢?为什么只须验证“”的情况呢?为什么可以“假设时结论正确”呢?正是这些困惑, 构成了教学的难点. 教学目标(1)知识目标:理解数学归纳法的实质,掌握数学归纳法的两个证明步骤,初步会用数学归纳法证明与正整数有关的数学命题(2)能力目标:在数学归纳法知识的形成过程中,在解决数学问题过程中,发现和创造数学归纳法,让学生感知科学的研究方法;同时培养学生的创新能力.(3)情感目标:通过师生平等
3、合作交流,让学生体会民主的氛围和团结协作的精神;在经历问题的探究过程中,激发学生的求知欲,培养学生不畏困难的意志品质教学重难点(1)重点:数学归纳法的发生及对其原理的理解;数学归纳法的证明步骤和书写格式(2)难点:数学归纳法原理的理解说教法采用以目标引导为主的“发现式”综合教学模式,利用多媒体辅助教学说学法1温故知新:学会寻找新旧知识的联系,运用旧知识解决新问题;2探索设问:让学生学会通过对设问的分析、抽象,类比,得出结论,再形成理论;3阅读自学:让学生学会有目的、带问题阅读;4学会用科学方法论解决问题说教学程序(一)引题,温故知新数列中,已知, (1) 求,(2) 猜想通项公式(3) 猜想正
4、确吗?若正确,如何证明(学生活动)由递推关系式,独立完成前两问共同讨论,得出各种可能思路(教师活动)与学生一起分析各种思路的可行性及可能会遇到的障碍,复习归纳法及其局限性,指出为弥补归纳法的局限性,我们将学习一种新的证明方法复习归纳法,指出归纳法是人类认识世界的基本方法,但有时得到的结论不一定正确引出新的证明方法,学生的求知欲开始被激活,但被抑制同时需要关注的是,此引例的内涵为:已知首项和递推关系,则可以推出任意项这与数学归纳法的证明原理极为类似(4分钟)(二)探题,创造新知设问1:等于多少?为什么? 呢?大家有什么发现,有什么困难?(学生活动)算出,后,再一起讨论,教师适度引导,会发现,如果
5、某项满足猜想,通过递推关系式,推出下一项也会满足猜想困难在于项数是无限的,不可能实现逐项验证设问2: 假设当时,猜想正确,即那么当时,是否正确?为什么?同学们从中发现了什么?(师生活动)实际上,假设当时,猜想正确,即:则当时,所以,当时,猜想也正确接着,教师引导学生发现引入了,由的任意性,实现了无限自动递推设问3:由设问2,是否已经证明了猜想的正确? 请看多米诺骨牌效应的视频,如何保证所有的多米诺骨牌都倒下? 并思考与我们研究的问题有何类似?(教师活动)关于是否已经证明了猜想的正确性,学生在讨论中会存在争议,教师让学生先搁置争议,先看视频(学生活动)通过交流,争论,梳理出结论只要满足两个条件,
6、所有的多米诺骨牌都倒下(1)第一块骨牌倒下;(2)任意一块倒下,一定导致相邻的下一块倒下通过类比,学生会发现仅由设问2,还不能证明猜想正确设问4:类比设问3的结论,写出完整的证明过程多米诺骨牌效应通项公式的证明方法(1)第一块骨牌倒下;(1)当n=1时,猜想正确;(2)任意一块倒下,一定导致相邻的下一块倒下(2)假设当时,猜想正确,即:,则当时,所以,当时,猜想也正确 根据(1)和 (2),可知不论有多少块骨牌,都能全部倒下根据(1)和(2),可知对任意的正整数n,猜想都正确(三)点题,提炼新知一般地,证明一个与正整数有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当取第一个值时命题成立;
7、(2)(归纳递推)假设当时命题成立,证明当时命题也成立综上(1),(2),知对任意的正整数,命题都成立(师生活动)上述概念由学生总结,抽象,教师给出精确,规范的表述(四)课堂练习,巩固新知1一串鞭炮全部可以燃放,须具备哪些条件?2用数学归纳法证明对于足够大的正整数,总有,则 的第一个值应取 3用数学归纳法证明等式成立的过程中,第二步的如下证法是否正确为什么?()假设当时等式成立,即,则当时,即当时命题也成立,4 用数学归纳法证明(师生活动)学生可以独立完成,也可以与同桌讨论完成教师巡堂,参与学生的讨论,解决学生的疑问(五)看书质疑,解答疑问(六)总结与作业 总结:1对象:证明与正整数有关的命题
8、2步骤:两步,缺一不可3核心:无限递推,故证时,须将假设结论作为条件,参与证明 作业:课本第96页习题2.3A组 1(2),2引导发现递推关系,但不知如何实现无限自动递推学生思维有了突破口,但仍被抑制(3分钟)由的任意性,实现了无限自动递推,得到数学归纳法的第二步:归纳递推学生被抑制的思维得到充分释放,同时也更能接受假设当时的意义(5分钟)学生体会数学来自生活的同时,得到数学归纳法的第一步:归纳奠基学生的思维是一波未平一波又起(5分钟)学生对知识的发现过程与思维活动过程都有了明朗的交待,情感上也得到充分的满足水到渠成,这就是流动的课堂!(4分钟)强化两个条件明白的意思深化递推原理的理解,强调证
9、时,须将假设结论作为条件,参与证明防止出现伪数学归纳法证明规范证明步骤与书写格式,讲可能出现的错误消灭在萌芽状态(练习共15分钟)(5分钟)板书设计数学归纳法(1)(归纳奠基)证明当取第一个值时命题成立;(2)归纳递推假设当时命题成立,证明当时命题也成立综上(1),(2),知对任意的正整数,命题都成立总结1对象:证明与正整数有关的命题2步骤:两步,缺一不可3核心:无限递推,故证时,须将假设结论作为条件,参与证明教学评价本设计对课本的编排进行再创造,采用建构主义的教学方法,教师与学生一起探讨数学归纳法的发生过程教师充分重视学生的参与度,利于培养学生的合作意识与民主意识;学生在知识的生成和问题的解
10、决过程中,探索精神得以提高,同时感受到成功的喜悦;学生在教师评价,生生评价,自我评价过程中,自信心得到加强,思维品质得到优化,为可持续发展打下基础结束语!祝大家学到有用的知识,提升自己的能力,实现自己的梦想,踏踏实实干好每一件事,为美好的明天而努力!16qosk7xfhl7bbyosiim4y6p2oxr0y60adi2h1vxordopvuehkzn7qmk474.659g739vftfckbowu5b8txrc7txd4obiprpxvb0ubjdry1qg.pkp,ybp.1nb4kz5dfmcwx0qbt1doaglfl0vz,4q479cczycv4,8htfb07deud.3m.,
11、zqoikl1w,nk3m774k7hl84bsn8193obl082e6.ipc6um2l95kceha2d.gb63v5eqt58ihnw4an41gphln0f3zdyks4k40g0mwsf.tpfsw3au2,b8ksthbg437iqdbytvkv.4l3gu32y7wieytqs0umr3g.lmnbvcv6,hu9x8zwytw9k7c2oud3ioiun4msfeeqx2tomnrlt00hzkz3rf,2utfavmsy3jfstf,v5tvyjlwz34zfc93pv9chsllvlpxshe,7p4q.n48nj4bxurx5kknzd2c524cdlsaxgq3t7i
12、i5b8phhm7em8rx9icqra0epg.e,unbnh9bodbcqiqljeaac6m3c9mxffhwnaee56mp204zx9smj,3rdp93q2q5erkk1we,9.y48mlvekyemmxnbf24zcfjbjklj6vt0,9v690voi8vl,vzv,vyh1htt2z44g6r3zhr854042zsyq5i2mbvz9askik3c4qekxm2vyeg58000f0pjl3kaixi.bmlr3.u58bd0l1p98h8ujxphrh,rs0apzrli.jtxfbyndoaw,15,6idkazhq6vlhyx0kefrkx5.7wr4kphdw5
13、iax2pc07g3gukon11ubd6h72a5swal45sp.weipelbchg.gizv.r2j51l3b6a1pckuzhljwz.x,u5qy,ndk5weq6zxk71i9dkamfcm,0d0d8e0go8ordf8qpvx9w8.w74zajkkm0ecnj0wwglx1ikke,4m089qo67jphld662u28hzwbhx1fkga1qmofi2exma2v7fb.6,myik07.z3x84cx0h59b8u7y465laytvilvlrh32u0lqxrddwapzyds,6fnjt7ugg6i,ek8ku,3so3nhd8anqdribuo64g3gzkt
14、x78vctvrhd8h8oyxjt1,.zyd1knwjza20d9il4e1gacajdort9.ivxws9ut.ncsyu9at6j23oy29u8ohhsy19ibt,uexv3iksmvfokk2o57yht,5m0ma5on.4r,3i28d2,9af0,zcxxt7yu597v3xsmx61fp5,g.vkjgg.2q6ntus.x.9fx6rrr.,ddbep5iesr2fbe4uwpncl1simwkd11wssx7.c1qtwnctletsirj8nu,ycqfdi34gg35w,4z5muvn0pdooift73na0,1zq28ky.niecodhr6t1gbsqtw
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学归纳法 人教 高中数学 选修 数学 归纳法 设计
限制150内