北师大版数学九年级上册第一单元测试题.doc
《北师大版数学九年级上册第一单元测试题.doc》由会员分享,可在线阅读,更多相关《北师大版数学九年级上册第一单元测试题.doc(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版数学九年级上册第一单元测试题2017年01月18日dxzxshuxue的初中数学组卷北师大版数学九年级上册第一单元测试题一选择题(共10小题)1菱形具有而一般平行四边形不具有的性质是()A对边相等B对角相等C对角线互相平分D对角线互相垂直2如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH等于()ABC5D43菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF=,BD=2,则菱形ABCD的面积为()A2BC6D84如图,在矩形ABCD中(ADAB),点E是BC上一点,且DE=DA,AFDE,垂足为点F,在下列结论中,不一定正确的
2、是()AAFDDCEBAF=ADCAB=AFDBE=ADDF5如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH若BE:EC=2:1,则线段CH的长是()A3B4C5D66下列命题中,真命题是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相平分的四边形是平行四边形D对角线互相垂直平分的四边形是正方形7如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A1B2C3D48如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是
3、菱形,则四边形ABCD需满足的条件是()AAB=ADBAC=BDCAD=BCDAB=CD9如图,在正方形ABCD中,H是BC延长线上一点,使CE=CH,连接DH,延长BE交DH于G,则下面结论错误的是()ABE=DHBH+BEC=90CBGDHDHDC+ABE=9010如图,正方形ABCD中,点E、F分别在BC、CD上,AEF是等边三角形,连接AC交EF于G,下列结论:BE=DF;DAF=15;AC垂直平分EF;BE+DF=EF;SCEF=2SABE,其中正确结论有()A2个B3个C4个D5个二填空题(共10小题)11如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE
4、BC,垂足为点E,则OE=12如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为13如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则CME=14如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于15菱形的两条对角线长分别为16和12,则它的面积为16如图,矩形ABCD的对角线AC,BD相交于点O,CEBD,DEAC若AC=4,则四边形CODE的周长是17如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线
5、分别交AD、AC于点E、O,连接CE,则CE的长为18如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(BEF)的面积为19如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为20矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为三解答题(共10小题)21如图,在ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点(1)求证:ABECDF;(2)当四边形AECF为菱形时,求出该菱形的面积22如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作
6、对角线BD的垂线交BA的延长线于点E(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求ADE的周长23如图,AC是矩形ABCD的对角线,过AC的中点O作EFAC,交BC于点E,交AD于点F,连接AE,CF(1)求证:四边形AECF是菱形;(2)若AB=,DCF=30,求四边形AECF的面积(结果保留根号)24如图,菱形ABCD的对角线AC,BD相交于点O,且DEAC,AEBD求证:四边形AODE是矩形25如图,四边形ABCD是正方形,点E是BC的中点,AEF=90,EF交正方形外角的平分线CF于F求证:AE=EF26已知,如图,正方形ABCD中,E为BC边上一点,F为BA延
7、长线上一点,且CE=AF连接DE、DF求证:DE=DF27如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF求证:CE=DF28如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE,若E=50,求BAO的大小29如图,在ABC中,ACB=90,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE(1)求证:四边形ACEF是平行四边形;(2)当B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论30如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN(1
8、)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长01月18日dxzxshuxue的初中数学组卷参考答案与试题解析一选择题(共10小题)1(2016莆田)菱形具有而一般平行四边形不具有的性质是()A对边相等B对角相等C对角线互相平分D对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案【解答】解:菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;菱形具有而一般平行四边形不具有的性质是:对角线互相垂直故选D【点评】此题考查了菱形的性质以及平行四边
9、形的性质注意菱形的对角线互相平分且垂直2(2016枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH等于()ABC5D4【分析】根据菱形性质求出AO=4,OB=3,AOB=90,根据勾股定理求出AB,再根据菱形的面积公式求出即可【解答】解:四边形ABCD是菱形,AO=OC,BO=OD,ACBD,AC=8,DB=6,AO=4,OB=3,AOB=90,由勾股定理得:AB=5,S菱形ABCD=,DH=,故选A【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=是解此题的关键3(2016宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F分别是A
10、D,CD边上的中点,连接EF若EF=,BD=2,则菱形ABCD的面积为()A2BC6D8【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【解答】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键4(2016荆门)如图,在矩形ABCD中(ADAB),点E是BC上一点,且DE=DA,AFDE,垂足为点F,在下列结论中,不一定正确的是()AAFDDCEBAF=ADCAB=AFDBE=ADDF【分析】先根据已知条
11、件判定AFDDCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可【解答】解:(A)由矩形ABCD,AFDE可得C=AFD=90,ADBC,ADF=DEC又DE=AD,AFDDCE(AAS),故(A)正确;(B)ADF不一定等于30,直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由AFDDCE,可得AF=CD,由矩形ABCD,可得AB=CD,AB=AF,故(C)正确;(D)由AFDDCE,可得CE=DF,由矩形ABCD,可得BC=AD,又BE=BCEC,BE=ADDF,故(D)正确;故选B【点评】本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩
12、形的性质:矩形的四个角都是直角,矩形的对边相等解题时注意:在直角三角形中,若有一个锐角等于30,则这个锐角所对的直角边等于斜边的一半5(2016毕节市)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH若BE:EC=2:1,则线段CH的长是()A3B4C5D6【分析】根据折叠可得DH=EH,在直角CEH中,设CH=x,则DH=EH=9x,根据BE:EC=2:1可得CE=3,可以根据勾股定理列出方程,从而解出CH的长【解答】解:设CH=x,则DH=EH=9x,BE:EC=2:1,BC=9,CE=BC=3,在RtECH中,EH2=EC2+CH2,即(9x)2=3
13、2+x2,解得:x=4,即CH=4故选(B)【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称变换在直角三角形中,利用勾股定理列出方程进行求解是解决本题的关键6(2016内江)下列命题中,真命题是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相平分的四边形是平行四边形D对角线互相垂直平分的四边形是正方形【分析】A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误
14、;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系7(2016龙岩模拟)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A1B2C3D4【分析】作F点关于BD的对称点F,则PF=PF,由两点之间线段最短可知当E、P、F在一条直线上时,EP+FP有最小值,然后求得EF的长度即可【解答】解:作F点关于BD的对称点F,则PF=PF,连接EF交BD于点PEP
15、+FP=EP+FP由两点之间线段最短可知:当E、P、F在一条直线上时,EP+FP的值最小,此时EP+FP=EP+FP=EF四边形ABCD为菱形,周长为12,AB=BC=CD=DA=3,ABCD,AF=2,AE=1,DF=AE=1,四边形AEFD是平行四边形,EF=AD=3EP+FP的最小值为3故选:C【点评】本题主要考查的是菱形的性质、轴对称路径最短问题,明确当E、P、F在一条直线上时EP+FP有最小值是解题的关键8(2016蜀山区二模)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()AAB
16、=ADBAC=BDCAD=BCDAB=CD【分析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由当EF=FG=GH=EH时,四边形EFGH是菱形,即可求得答案【解答】解:点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,EF=GH=AB,EH=FG=CD,当EF=FG=GH=EH时,四边形EFGH是菱形,当AB=CD时,四边形EFGH是菱形故选:D【点评】此题考查了中点四边形的性质、菱形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用9(2016曹县校级模拟
17、)如图,在正方形ABCD中,H是BC延长线上一点,使CE=CH,连接DH,延长BE交DH于G,则下面结论错误的是()ABE=DHBH+BEC=90CBGDHDHDC+ABE=90【分析】根据正方形的四条边都相等,角都是直角,先证明BCE和DCH全等,再根据全等三角形对应边相等,全等三角对应角相等,对各选项分析判断后利用排除法【解答】解:在正方形ABCD中,BC=CD,BCD=DCH=90,在BCE和DCH中,BCEDCH(SAS),BE=DH,故A选项正确;H=BEC,故B选项错误;EBC=HDC,EBC+BEC=HDC+DEG,BCD=90,EBC+BEC=90,HDC+DEG=90,BGD
18、H,故C选项正确;ABE+EBC=90,HDC+ABE=90,故D选项正确故选B【点评】本题主要利用正方形的和三角形全等的性质求解,熟练掌握性质是解题的关键10(2016新华区一模)如图,正方形ABCD中,点E、F分别在BC、CD上,AEF是等边三角形,连接AC交EF于G,下列结论:BE=DF;DAF=15;AC垂直平分EF;BE+DF=EF;SCEF=2SABE,其中正确结论有()A2个B3个C4个D5个【分析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关
19、系,表示出BE与EF,利用三角形的面积公式分别表示出SCEF和2SABE,再通过比较大小就可以得出结论【解答】解:四边形ABCD是正方形,AB=BC=CD=AD,B=BCD=D=BAD=90AEF等边三角形,AE=EF=AF,EAF=60BAE+DAF=30在RtABE和RtADF中,RtABERtADF(HL),BE=DF(故正确)BAE=DAF,DAF+DAF=30,即DAF=15(故正确),BC=CD,BCBE=CDDF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60=EFsin60=2CGsin60=x,AC=,A
20、B=,BE=x=,BE+DF=xxx,(故错误),SCEF=x2,SABE=x2,2SABE=x2=SCEF,(故正确)综上所述,正确的有4个,故选:C【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键二填空题(共10小题)11(2016内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OEBC,垂足为点E,则OE=【分析】先根据菱形的性质得ACBD,OB=OD=BD=3,OA=OC=AC=4,再在RtOBC中利用勾股定理计算出BC=5,然后利用面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 数学 九年级 上册 第一 单元测试
限制150内