1.2.2组合(教案).doc
《1.2.2组合(教案).doc》由会员分享,可在线阅读,更多相关《1.2.2组合(教案).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、_1 22组合教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。过程与方法:了解组合数的意义,理解排列数与组合数 之间的联系,掌握组合数公式,能运用组合数公式进行计算。情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课 教 具:多媒体、实物投影仪 第一课时一、复习引入: 1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方
2、法那么完成这件事共有 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法 3排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列4排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5排列数公式:()6阶乘:表示正整数1到的连乘积,叫做的阶乘规定7排列数的另一个计算公式:= 8.提出问题: 示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动
3、,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合二、讲解新课:1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合说明:不同元素;“只取不排”无序性;相同组合:元素相同例1判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环
4、比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合2组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数用符号表示例2用计算器计算解:由计算器可得 例3计算:(1); (2); (1)解: 35;(2)解法1:120 解法2:120第二课时3组合数公式的推导:(1)从4个不同元素
5、中取出3个元素的组合数是多少呢?启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下: 组 合 排列 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步: 考虑从4个不同元素中取出3个元素的组合,共有个; 对每一个组合的3个不同元素进行全排列,各有种方法由分步计数原理得:,所以,(2)推广:一般地,求从n个不同元素中取出m个元素的排列数,可以分如下两步: 先求从n个不同元素中取出m个元素的组合数; 求每一个组合中m个元素全排列数,根据分步计数原理得:(3)组合数的公式:或 规定: .
6、三、讲解范例:例4求证:证明:例5设 求的值 解:由题意可得: ,解得, 或或,当时原式值为7;当时原式值为7;当时原式值为11所求值为4或7或11第三课时例6 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛按照足球比赛规则,比赛时一个足球队的上场队员是11人问: (l)这位教练从这 17 名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是
7、特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C 手 12 376 (种) . (2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有种选法;第2步,从选出的 n 人中选出 1 名守门员,共有种选法所以教练员做这件事情的方法数有=136136(种).例7(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元
8、素中取出2个元素的组合数,即线段共有 (条).(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有(条).例8在 100 件产品中,有 98 件合格品,2 件次品从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有= 161700 (种). (2)从2 件次品中抽出 1
9、件次品的抽法有种,从 98 件合格品中抽出 2 件合格品的抽法有种,因此抽出的 3 件中恰好有 1 件次品的抽法有=9506(种). (3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况在第(2)小题中已求得其中1件是次品的抽法有种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有+=9 604 (种) . 解法2 抽出的3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即=161 700-152 096 = 9 604 (种). 说明:“至少”“至多
10、”的问题,通常用分类法或间接法求解。变式:按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;例9(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?解:(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?解:问题可以分成2类:第一类 2名男生和2名女生参加,有中选法;第二类 3名男生和1名女生参加,有中选法依据分类计数原理,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2 组合 教案
限制150内