概率论与数理统计习题3详解概要.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《概率论与数理统计习题3详解概要.doc》由会员分享,可在线阅读,更多相关《概率论与数理统计习题3详解概要.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、_一、第三章习题详解:3.1设二维随机向量的分布函数为:求.解:因为 ,所以 3.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X表示取到的黑球的个数, 用Y表示取到的白球的个数, 求(X , Y ) 的概率分布.解:因为X + Y = 4,所以(X,Y)的可能取值为(2,2),(3,1)且 , ,故(X,Y)的概率分布为XY12200.630.403.3 将一枚均匀的硬币抛掷3次, 用X表示在3次中出现正面的次数, 用Y表示3次中出现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布.解:因为,又X的可能取值为0,1,2,3所以(X,Y)的可能取值为(0,3),(
2、1,1), (2,1),(3,3)且 , ,故(X,Y)的概率分布为XY13001/813/8023/80301/83.4设二维随机向量的概率密度函数为: (1) 确定常数;(2) 求(3) 求,这里是由这三条直线所围成的三角形区域.解:(1)因为由 ,得9a=1,故a=1/9.(2) (3) 3.5 设二维随机向量的概率密度函数为:(1) 求分布函数;(2) 求解:(1) 求分布函数; 当,其他情形,由于=0,显然有=0。综合起来,有(2) 求 3.6 向一个无限平面靶射击, 设命中点的概率密度函数为求命中点与靶心(坐标原点) 的距离不超过a 的概率.解: 3.7设二维随机向量的概率分布如下
3、表所示, 求X 和Y 的边缘概率分布.XY02510.150.250.3530.050.180.02解:因为 所以,X的边缘分布为X13P0.750.25因为 所以,Y的边缘分布为Y025P0.200.430.373.8 设二维随机向量的概率密度函数为求边缘概率密度.解:因为,当时,;其他情形,显然所以,X的边缘分布密度为 又因为,当时,其他情形,显然所以,Y的边缘分布密度为3.9 设二维随机向量的概率密度函数为求边缘概率密度.解,积分区域显然为三角形区域,当时,因此;其他情形,显然所以,X的边缘分布密度为同理,当时,因此其他情形,显然所以,Y的边缘分布密度为3.10 设二维随机向量的概率密度
4、函数为(1)确定常数c的值. (2)求边缘概率密度.解:(1)因为 所以 c = 6.(2) 因为,当时,所以,X的边缘分布密度为 又因为,当时,所以,Y的边缘分布密度为3.11 求习题3.7 中的条件概率分布.解:由T3.7知,X、Y的边缘分布分别是X13Y025P0.750.25P0.200.430.37(1)当X=1时,Y的条件分布为 即 Y025P1/51/37/15(2)当X=3时,Y的条件分布为 即 Y025P1/518/252/25(3)当Y=0时,X的条件分布为 即X13P3/41/4(4)当Y=2时,X的条件分布为 即X13P0.5810.419(5)当Y=5时,X的条件分布
5、为 即X13P0.9460.0543.12 设 X 在区间(0,1) 上随机地取值, 当观察到X = x(0 x 0,y0,都有 ,所以,X与Y是相互独立的.3.18 设二维随机向量的分布函数为讨论的独立性.解:因为 由于 所以,X与Y是相互独立的。3.19 设X 与Y 是两个相互独立的随机变量, 并且均服从区间(0, 1) 上的均匀分布, 求X+Y的概率密度函数.解:由于X 与Y均服从区间(0, 1) 上的均匀分布,故X 与Y的边缘密度函数分别为:,记,由于X 与Y 是两个相互独立的随机变量,根据书中72页(3.7.3)式,的概率密度函数可以写为当时,若,则;若或,被积函数为0,此时显然有.
6、当时,若,则,若或,被积函数为0,此时显然有;的其他情形,显然有=0. 综合起来,有此题也可以用先求分布函数然后再求导的方法来解,需要注意的一点是, 当时,积分区域要分成两个部分.3.20 设X 与Y 是两个相互独立的随机变量, 概率密度函数分别为求的概率密度函数.解:记,由于X 与Y 是两个相互独立的随机变量,根据书中72页(3.7.3)式,的概率密度函数可以写为,于是有3.21 设二维随机向量的概率密度函数为求的概率密度函数.解: 根据书中72页(3.7.1)式,的概率密度函数可以写为当时,若,则,若或,被积函数为0,此时显然有;当时,若,则,若或,被积函数为0,此时显然有;的其他情形,显
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 习题 详解 概要
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内