集成运算放大器及其应用.doc
《集成运算放大器及其应用.doc》由会员分享,可在线阅读,更多相关《集成运算放大器及其应用.doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、_第5章 集成运算放大器及其应用在半导体制造工艺的基础上,把整个电路中的元器件制作在一块硅基片上,构成具有特定功能的电子电路,称为集成电路。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产,因此其发展速度极为惊人。目前集成电路的应用几乎遍及所有产业的各种产品中。在军事设备、工业设备、通信设备、计算机和家用电器等中都采用了集成电路。集成电路按其功能来分,有数字集成电路和模拟集成电路。模拟集成电路种类繁多,有运算放大器、宽频带放大器、功率放大器、模拟乘法器、模拟锁相环、模/数和数/模转换器、稳压电源和音像设备中常用的其他模拟集成电路等。在模拟
2、集成电路中,集成运算放大器(简称集成运放)是应用极为广泛的一种,也是其他各类模拟集成电路应用的基础,因此这里首先给予介绍。5.1 集成电路与运算放大器简介5.1.1 集成运算放大器概述集成运放是模拟集成电路中应用最为广泛的一种,它实际上是一种高增益、高输入电阻和低输出电阻的多级直接耦合放大器。之所以被称为运算放大器,是因为该器件最初主要用于模拟计算机中实现数值运算的缘故。实际上,目前集成运放的应用早已远远超出了模拟运算的范围,但仍沿用了运算放大器(简称运放)的名称。集成的发展十分迅速。通用型产品经历了四代更替,各项技术指标不断改进。同时,发展了适应特殊需要的各种专用型集成运放。第一代集成运放以
3、(我国的FC3)为代表,特点是采用了微电流的恒流源、共模负反馈等电路,它的性能指标比一般的分立元件要提高。主要缺点是内部缺乏过电流保护,输出短路容易损坏。第二代集成运放以二十世纪六十年代的型高增益运放为代表,它的特点是普遍采用了有源负载,因而在不增加放大级的情况下可获得很高的开环增益。电路中还有过流保护措施。但是输入失调参数和共模抑制比指标不理想。 第三代集成运放代以二十世纪七十年代的AD508为代表,其特点使输入级采用了“超管”,且工作电流很低。从而使输入失调电流和温漂等项参数值大大下降。第四代集成运放以二十世纪八十年代的HA2900为代表,它的特点是制造工艺达到大规模集成电路的水平。将场效
4、应管和双极型管兼容在同一块硅片上,输入级采用MOS场效应管,输入电阻达100M以上,而且采取调制和解调措施,成为自稳零运算放大器,使失调电压和温漂进一步降低,一般无须调零即可使用。目前,集成运放和其他模拟集成电路正向高速、高压、低功耗、低零漂、低噪声、大功率、大规模集成、专业化等方向发展。除了通用型集成运放外,有些特殊需要的场合要求使用某一特定指标相对比较突出的运放,即专用型运放。常见的专用型运放有高速型、高阻型、低漂移型、低功耗型、高压型、大功率型、高精度型、跨导型、低噪声型等。5.1.2 模拟集成电路的特点由于受制造工艺的限制,模拟集成电路与分立元件电路相比具有如下特点:1.采用有源器件由
5、于制造工艺的原因,在集成电路中制造有源器件比制造大电阻容易实现。因此大电阻多用有源器件构成的恒流源电路代替,以获得稳定的偏置电流。BJT比二极管更易制作,一般用集-基短路的BJT代替二极管。2.采用直接耦合作为级间耦合方式由于集成工艺不易制造大电容,集成电路中电容量一般不超过100pF,至于电感,只能限于极小的数值(1mH以下)。因此,在集成电路中,级间不能采用阻容耦合方式,均采用直接耦合方式。3.采用多管复合或组合电路 集成电路制造工艺的特点是晶体管特别是BJT或FET最容易制作,而复合和组合结构的电路性能较好,因此,在集成电路中多采用复合管(一般为两管复合)和组合(共射-共基、共集-共基组
6、合等)电路。5.1.3 集成运放的基本组成图5-1 集成运放的组成框图集成运放的类型很多,电路也不尽相同,但结构具有共同之处,其一般的内部组成原理框图如图5-1所示,它主要由输入级、中间级和输出级和偏置电路四个主要环节组成。输入级主要由差动放大电路构成,以减小运放的零漂和其他方面的性能,它的两个输入端分别构成整个电路的同相输入端和反相输入端。中间级的主要作用是获得高的电压增益,一般由一级或多级放大器构成。输出级一般由电压跟随器(电压缓冲放大器)或互补电压跟随器组成,以降低输出电阻,提高运放的带负载能力和输出功率。偏置电路则是为各级提供合适的工作点及能源的。此外,为获得电路性能的优化,集成运放内
7、部还增加了一些辅助环节,如电平移动电路、过载保护电路和频率补偿电路等。图5-2 集成运放的电路符号a)国际符号 b)惯用符号集成运放的电路符号如图5-2所示(省略了电源端、调零端等)。集成运放有两个输入端分别称为同相输入端uP和反相输入端uN;一个输出端uo。其中的“-”、“+”分别表示反相输入端uN和同相输入端uP。在实际应用时,需要了解集成运放外部各引出端的功能及相应的接法,但一般不需要画出其内部电路。5.1.4 集成运放的主要参数集成运放的参数是否正确、合理选择是使用运放的基本依据,因此了解其各性能参数及其意义是十分必要的。集成运放的主要参数有以下几种。1.开环差模电压增益Aod是指运放
8、在开环、线性放大区并在规定的测试负载和输出电压幅度的条件下的直流差模电压增益(绝对值)。一般运放的Aod为60120dB,性能较好的运放Aod140dB。值得注意的是,一般希望Aod越大越好,实际的Aod与工作频率有关,当频率大于一定值后,Aod随频率升高而迅速下降。2.温度漂移放大器的零点漂移的主要来源是温度漂移,而温度漂移对输出的影响可以折合为等效输入失调电压UIO和输入失调电流IIO,因此可以用以下指标来表示放大器的温度稳定性即温漂指标。在规定的温度范围内,输入失调电压的变化量DUIO与引起UIO变化的温度变化量DT之比,称为输入失调电压/温度系数DUIO/DT。DUIO/DT越小越好,
9、一般为(1020) mV/。3.最大差模输入电压Uid,max这是指集成运放的两个输入端之间所允许的最大输入电压值。若输入电压超过该值,则可能使运放输入级BJT的其中一个发射结产生反向击穿。显然这是不允许的。Uid,max大一些好,一般为几到几十伏。4.最大共模输入电压Uic,max这是指运放输入端所允许的最大共模输入电压。若共模输入电压超过该值,则可能造成运放工作不正常,其共模抑制比KCMR将明显下降。显然,Uic,max大一些好,高质量运放最大共模输入电压可达十几伏。5.单位增益带宽fTfT是指使运放开环差模电压增益Aod下降到0dB(即Aod =1)时的信号频率,它与三极管的特征频率fT
10、相类似,是集成运放的重要参数。6.开环带宽fHfH是指使运放开环差模电压增益Aod下降为直流增益的倍(相当于-3dB)时的信号频率。由于运放的增益很高,因此fH一般较低,约几赫兹至几百赫兹左右(宽带高速运放除外)。7.转换速率SR这是指运放在闭环状态下,输入为大信号(如矩形波信号等)时,其输出电压对时间的最大变化速率,即转换速率SR反映运放对高速变化的输入信号的响应情况,主要与补偿电容、运放内部各管的极间电容、杂散电容等因素有关。SR大一些好,SR越大,则说明运放的高频性能越好。一般运放SR小于1V/ms,高速运放可达65 V/ms以上。需要指出的是,转换速率SR是由运放瞬态响应情况得到的参数
11、,而单位增益带宽fT和开环带宽fH是由运放频率响应(即稳态响应)情况得到的参数,它们均反映了运放的高频性能,从这一点来看,它们的本质是一致的。但它们分别是在大信号和小信号的条件下得到的,从结果看,它们之间有较大的差别。8.最大输出电压Uo,max最大输出电压Uo,max是指在一定的电源电压下,集成运放的最大不失真输出电压的峰峰值。除上述指标外,集成运放的参数还有共模抑制比KCMR、差模输入电阻Rid、共模输入电阻Ric、输出电阻Ro、电源参数、静态功耗PC等,其含义可查阅相关手册,这里不再赘述。5.2差动放大电路5.2.1 零点漂移集成运放电路各级之间由于均采用直接耦合方式,直接耦合放大电路具
12、有良好的低频频率特性,可以放大缓慢变化甚至接近于零频(直流)的信号(如温度、湿度等缓慢变化的传感信号),但却有一个致命的缺点,即当温度变化或电路参数等因素稍有变化时,电路工作点将随之变化,输出端电压偏离静态值(相当于交流信号零点)而上下漂动,这种现象称为“零点漂移”,简称“零漂”。由于存在零漂,即使输入信号为零,也会在输出端产生电压变化从而造成电路误动作,显然这是不允许的。当然,如果漂移电压与输入电压相比很小,则影响不大,但如果输入端等效漂移电压与输入电压相比很接近或很大,即漂移严重时,则有用信号就会被漂移信号严重干扰,结果使电路无法正常工作。容易理解,多级放大器中第一级放大器零漂的影响最为严
13、重。如放大器第一级的静态工作点由于温度的变化,使电压稍有偏移时,第一级的输出电压就将发生微小的变化,这种缓慢微小的变化经过多级放大器逐步放大后,输出端就会产生较大的漂移电压。显然,直流放大器的级数越多,放大倍数越高,输出的漂移现象越严重。因此,直接耦合放大电路必须采取措施来抑制零漂。抑制零点漂移的措施通常采用以下几种:第一是采用质量好的硅管。硅管受温度的影响比锗管小得多,所以目前要求较高的直流放大器的前置放大级几乎都采用硅管。第二是采用热敏元件进行补偿。就是利用温度对非线性元件(晶体管二极管、热敏电阻等)的影响,来抵消温度对放大电路中三极管参数的影响所产生的漂移。第三是采用差动式放大电路。这是
14、一种广泛应用的电路,它是利用特性相同的晶体管进行温度补偿来抑制零点漂移的,将在下面介绍。5.2.2 简单差动放大电路差动放大电路又称为差分放大器。这种电路能有效的减少三极管的参数随温度变化所引起的漂移,较好地解决在直流放大器中放大倍数和零点漂移的矛盾,因而在分立元件和集成电路中获得十分广泛的应用。1.电路组成和工作原理简单差动放大电路如图5-3所示,它由两个完全对称的单管放大电路构成,有两个输入端和两个输出端。其中三极管VT1, VT2的参数和特性完全相同(如b1 =b2 =b 等),RB1=RB2=RB,RC1=RC2=RC。显然,两个单管放大电路的静态工作点和电压增益等均相同。当然,实际电
15、路总存在一定的差异,不可能完全对称,但在集成电路中,这种差异很小。图5-3 简单差动放大电路由于两管电路完全对称,因此,静态(ui =0)时,直流工作点UC1=UC2 ,此时电路的输出uo= UC1-UC2 = 0(这种情况称为零输入时零输出)。当温度变化引起管子参数变化时,每一单管放大器的工作点必然随之改变(存在零漂),但由于电路的对称性,UC1和UC2同时增大或减小,并保持UC1 =UC2,即始终有输出电压uo =0,或者说零漂被抑制了。这就是差动放大电路抑制零漂的原理。设每个单管放大电路的放大倍数为Au1,在电路完全对称的情况下,有 (5.1)显然uo1=Au1ui1,uo2=Au1ui
16、2 ,而差动放大电路的输出取自两个对称单管放大电路的两个输出端之间(称为平衡输出或双端输出),其输出电压 uo = uo1-uo2= Au1(ui1-ui2) (5.2)由式(5.2)可知,差动放大电路输出电压与两单管放大电路的输入电压之差成正比,“差动”的概念由此而来。实际的输入信号(即有用信号)电压通常加到两个输入端之间(称为平衡输入或双端输入),由于电路对称,因此两管的发射结电流大小相等、方向相反,此时若一管的输出电压升高,另一管则降低,且有uo1= -uo2 ,所以uo=uo1-uo2=2uo1,因此输出电压不但不会为0,反而比单管输出大一倍。这就是差动放大电路可以有效放大有用输入信号
17、的原理。设有用信号输入时,两管各自的输入电压(参考方向均为b极指向e极)分别用uid1和uid2表示,则有,uid1 = ui /2,uid2= -ui /2,uid1= -uid2。显然,uid1与uid2大小相等、极性相反,通常称它们为一对差模输入信号或差模信号。而电路的差动输入信号则为两管差模输入信号之差,即uid =uid1-uid2=2uid1= ui 。在只有差模输入电压uid作用时,差动放大电路的输出电压就是差动输出电压uod 。通常把输入差模信号时的放大器增益称为差模增益,用Aud表示,即 (5.3)显然,差模增益就是通常的放大器的电压增益,对于简单差动放大电路,有 (5.4)
18、差模增益Aud表示电路放大有用信号的能力。一般情况下要求|Aud| 尽可能大。以上讨论的是差动放大电路如何放大有用信号的。下面介绍它是如何抑制零漂信号(即共模信号)的原理, 设在一定的温度变化值DT的情况下,两个单管放大器的输出漂移电压分别为uoc1和uoc2 ,uoc1和uoc2折合到各自输入端的等效输入漂移电压分别为uic1和uic2 ,显然有uoc1 = uoc2 ,uic1 = uic2将uic1与uic2分别加到差动放大电路的两个输入端,它们大小相等,极性相同,通常称它们为一对共模输入信号或共模信号。共模信号可以表示为uic1 = uic2 = uic。显然,共模信号并不是实际的有用
19、信号,而是温度等因素变化所产生的漂移或干扰信号,因此需要进行抑制。当只有共模输入电压uic作用时,差动放大电路的输出电压就是共模输出电压uoc ,通常把输入共模信号时的放大器增益称为共模增益,用Auc表示,则 (5.5)在电路完全对称情况下,差动放大电路双端输出时的uoc=0,则Auc =0共模增益Auc表示电路抑制共模信号的能力。|Auc|越小,电路抑制共模信号的能力也越强。当然,实际差动放大电路的两个单管放大器不可能做到完全对称,因此Auc不可能完全等于0。需要指出的是,差动放大电路实际工作时,总是既存在差模信号,也存在共模信号,因此,实际的ui1和ui2可表示为 ui1=uic+uid1
20、ui2=uic+uid2=uic-uid1由上述二式容易得到:uic=(ui1+ui2)/2 (5.6)uid1= -uid2 =(ui1-ui2)/2电路的差模输入电压uid=2uid1= ui1-ui2 = ui (5.7)2.共模抑制比在差模信号和共模信号同时存在的情况下,若电路基本对称,则对输出起主要作用的是差模信号,而共模信号对输出的作用要尽可能被抑制。为定量反映放大器放大有用的差模信号和抑制有害的共模信号的能力,通常引入参数共模抑制比,用KCMR表示。它定义为 (5.8a)共模抑制比用分贝表示则为 (5.8b)显然,KCMR越大,输出信号中的共模成分相对越少,电路对共模信号的抑制能
21、力就越强。5.2.3 射极耦合差动放大电路前面所讨论的简单差动放大电路在实际应用中存在以下不足。 即使电路完全对称,每一单管放大电路仍存在较大的零漂,在单端输出(非对称输出,即输出取自任一单管放大电路的输出)的情况下,该电路和普通放大电路一样,没有任何抑制零漂的能力。电路不完全对称时,抑制零漂的作用明显变差。 每一单管放大电路存在的零漂(即工作点的漂移)可能使它们均工作于饱和区,从而使整个放大器无法正常工作。采用射极耦合差动放大电路可以较好地克服简单差动放大电路的不足,一种实用的射极耦合差动放大电路如图5-4a所示,电路中接入-VEE的目的是为了保证输入端在未接信号时基本为零输入(IB, RB
22、均很小),同时又给BJT发射结提供了正偏。其中,RC1=RC2=RC,RB1=RB2=RB。由图5-4a可以看出,射极耦合差动放大电路与简单差动放大电路的关键不同之处在于两管的发射极串联了一个公共电阻RE(因此也称为电阻长尾式差动放大电路),而正是RE的接入使得电路的性能发生了明显变化。当输入信号为差模信号时,则ui1= -ui2 =uid/2,因此两管的发射极电流 iE1和iE2将一个增大、另一个同量减小,即流过RE的电流iE =iE1+iE2保持不变,RE两端的电压也保持不变(相当于交流iE =0, uE =0),也就是说,RE对差模信号可视为短路,由此可得该电路的差模交流通路如图5-4b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集成 运算放大器 及其 应用
限制150内