高考求函数值域及最值得方法及例题-训练题.doc
《高考求函数值域及最值得方法及例题-训练题.doc》由会员分享,可在线阅读,更多相关《高考求函数值域及最值得方法及例题-训练题.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、_函数专题之值域与最值问题一观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域.例1:求函数的值域.点拨:根据算术平方根的性质,先求出的值域. 解:由算术平方根的性质,知0, 故3+3。 函数的值域为 .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=x(0x5)的值域。(答案:值域为:0,1,2,3,4,5) 二反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2:求函数y=(x+1)/(x+2)的值域.点
2、拨:先求出原函数的反函数,再求出其定义域。解:显然函数y=(x+1)/(x+2)的反函数为:x=(12y)/(y1),其定义域为y1的实数,故函数y的值域为yy1,yR。点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10x+10-x)/(10x10-x)的值域。(答案:函数的值域为yy1)三配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域.例3:求函数y=(x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求。解:由x2+x+20,可知函数的定义域
3、为x1,2。此时x2+x+2=(x1/2)29/40,9/4 0x2+x+23/2,函数的值域是0,3/2点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。练习:求函数y=2x5154x的值域.(答案:值域为yy3)四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。例4:求函数y=(2x22x+3)/(x2x+1)的值域.点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。解:将上式化为(y2)x2(y2)x+(y-3)=0 ()当y2时,由=(y2)24
4、(y2)x+(y3)0,解得:2x10/3 当y=2时,方程()无解。函数的值域为2y10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b(cx2+dx+e)的函数。练习:求函数y=1/(2x23x+1)的值域。(答案:值域为y8或y0)。五最值法:对于闭区间a,b上的连续函数y=f(x),可求出y=f(x)在区间a,b内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。例5:已知(2x2-x-3)/(3x2+x+1)0,且满足x+
5、y=1,求函数z=xy+3x的值域.点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。解:3x2+x+10上述分式不等式与不等式2x2-x-30同解,解之得1x3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1x3/2), z=-(x-2)2+4且x-1,3/2,函数z在区间-1,3/2上连续,故只需比较边界的大小。 当x=-1时,z=5;当x=3/2时,z=15/4。函数z的值域为z5z15/4。点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。练习:若x为实数,则函数y=x2+
6、3x-5的值域为( ) A(,) B7, C0,) D5,)(答案:D)。六图象法:通过观察函数的图象,运用数形结合的方法得到函数的值域.例6求函数y=x+1+(x-2)2 的值域.点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。解:原函数化为2x+1(x1) y=3(-12) 它的图象如图所示。 显然函数值y3,所以,函数值域3,。 点评:分段函数应注意函数的端点。利用函数的图象求函数的值域,体现数形结合的思想。是解决问题的重要方法。求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。七单调法:利用函数在给定的区间上的单调递增或单调递减求值域.例1
7、求函数y=4x1-3x(x1/3)的值域.点拨:由已知的函数是复合函数,即g(x)= 1-3x,y=f(x)+g(x),其定义域为x1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。 解:设f(x)=4x,g(x)= 1-3x ,(x1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x1-3x 在定义域为x1/3上也为增函数,而且yf(1/3)+g(1/3)=4/3,因此,所求的函数值域为y|y4/3。 点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。 练习:求函数y=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 函数 值域 值得 方法 例题 训练
限制150内