最新-立体几何全国卷高考真题.doc





《最新-立体几何全国卷高考真题.doc》由会员分享,可在线阅读,更多相关《最新-立体几何全国卷高考真题.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料2015-立体几何全国卷高考真题.2015-2017立体几何高考真题1、(2015年1卷6题)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A)14斛 (B)22斛 (C)36斛 (D)66斛【答案】B【解析】设圆锥底面半径为r,则=,所以米堆的体积为=,故堆放的米约为1.62
2、22,故选B.考点:圆锥的性质与圆锥的体积公式2、(2015年1卷11题)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20,则r=( )(A)1 (B)2 (C)4 (D)8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为=16 + 20,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式3、(2015年1卷18题)如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面A
3、BCD,DF平面ABCD,BE=2DF,AEEC.()证明:平面AEC平面AFC;()求直线AE与直线CF所成角的余弦值.【解析】试题分析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EGAC,通过计算可证EGFG,根据线面垂直判定定理可知EG平面AFC,由面面垂直判定定理知平面AFC平面AEC;()以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,利用向量法可求出异面直线AE与CF所成角的余弦值.试题解析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由ABC=120,可
4、得AG=GC=.由BE平面ABCD,AB=BC可知,AE=EC,又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,EGFG,ACFG=G,EG平面AFC,EG面AEC,平面AFC平面AEC. ()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 考点:空间垂直判定与性质;异面直线所成角的计算;空间
5、想象能力,推理论证能力4、(2015年2卷6题)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A B C D【解析】由三视图得,在正方体中,截去四面体,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为,故选D考点:三视图5、(2015年2卷9题)已知A,B是球O的球面上两点,AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A36 B64 C144 D256【解析】如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面
6、积为,故选C考点:外接球表面积和椎体的体积6、(2015年2卷19题)(本题满分12分)如图,长方体中,,点,分别在,上,过点,的平面与此长方体的面相交,交线围成一个正方形DD1C1A1EFABCB1()在图中画出这个正方形(不必说出画法和理由);()求直线与平面所成角的正弦值【解析】()交线围成的正方形如图:()作,垂足为,则,因为为正方形,所以于是,所以以为坐标原点,的方向为轴的正方向,建立如图所示的空间直角坐标系,则,设是平面的法向量,则即所以可取又,故所以直线与平面所成角的正弦值为考点:1、直线和平面平行的性质;2、直线和平面所成的角7、(2016年1卷6题)如图,某几何体的三视图是三
7、个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A) (B) (C) (D)【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和故选A考点:三视图及球的表面积与体积8、(2016年1卷11题)平面过正方体ABCD-A1B1C1D1的顶点A,/平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m、n所成角的正弦值为(A) (B) (C) (D)试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为
8、所成的角,即为,故所成角的正弦值为,选A.考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.9、(2016年1卷18题)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, ,且二面角D-AF-E与二面角C-BE-F都是(I)证明:平面ABEF平面EFDC;(II)求二面角E-BC-A的余弦值试题解析:(I)由已知可得,所以平面又平面,故平面平面(II)过作,垂足为,由(I)知平面以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空
9、间直角坐标系由(I)知为二面角的平面角,故,则,可得,由已知,所以平面又平面平面,故,由,可得平面,所以为二面角的平面角,从而可得所以,设是平面的法向量,则,即,所以可取设是平面的法向量,则,同理可取则故二面角的余弦值为考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.10、(2016年2卷6题)右图是由圆柱与圆锥组合而成的
10、几何体的三视图,则该几何体的表面积为(A)20 (B)24 (C)28 (D)32解析:几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为由图得,由勾股定理得:,故选C11、(2016年2卷14题),是两个平面,m,n是两条线,有下列四个命题:如果,那么如果,那么如果,那么如果,那么m与所成的角和n与所成的角相等其中正确的命题有 .(填写所有正确命题的编号)【解析】12(2016年2卷19题)(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,EF交BD于点H.将DEF沿EF折到的位置.(I)证明:平面ABCD;(II)求二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 立体几何 全国卷 高考

限制150内