《最新Moldflow的模流分析入门实例.doc》由会员分享,可在线阅读,更多相关《最新Moldflow的模流分析入门实例.doc(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料Moldflow的模流分析入门实例. 基于MOLDFLOW的 模流分析技术上机实训教程 主编: 姓名: 年级: 专业: 南京理工大学泰州科技学院实训一 基于Moldflow的模流分析入门实例1.1 Moldflow应用实例下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。 图1-1 脸盆造型 图1-2 充填分析结果 (1)格式转存。将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。(2)新建工程。启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。在“工程名称
2、”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。 图1-3 “创建新工程”对话框 图1-4 工程管理视图(3)导入模型。选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。选择STL文件进行导入。选择文件“lianpen.stl”。单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫米。 图1-5 导入选项单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“l
3、p1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。 图1-6 脸盆模型 图1-7 工程管理视窗 图1-8 方案任务视窗 (4)网格划分。网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。双击方案任务图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如图1-9所示。单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。 图1-9 “生成网格”定义信息 图1-10 网格日志划分
4、完毕后,可以看见如图1-11所示的脸盆网格模型,此时在管理视窗新增加了三角形单元层和节点层,如图1-12所示。 图 1-11 网格模型 图1-12 层管理视窗(5)网格检验与修补。网格检验与修补的目的是为了检验出模型中存在的不合理网格,将其修改成合理网格,便于MOLDFLOW顺利求解。选择“网格”,“网格统计”命令,系统弹出“网格统计”对话框,如图1-13所示。图1-13 “网格统计”对话框“网格统计”对话框显示模型的纵横比范围为1.15500045.92000,匹配率达到82.5%大于80%,重叠单元个数为0,自动划分网格的脸盆模型网格匹配率较高,达到计算要求。(6)选择类型分析。Moldf
5、low提供的分析类型有多种,但作为产品的初步成型分析,首先的分析类型为“浇口位置”,其目的是根据“最佳浇口位置”的分析结果设定浇口位置,避免由于浇口位置不当引起的不合理成型。双击方案任务视窗中的图标,或者选择“分析”,“设定分析序列”命令,系统自动弹出“选择分析顺序”对话框,如图1-14所示。 图1-14 “选择分析顺序”对话框选择对话框中的“浇口位置”,单击“确定”按钮,此时方案任务视窗中第三项变为 。分析类型选定。(7)定义材料类型。塑料脸盆的成型材料使用默认的PP材料。在方案任务视窗中的“材料”栏显示。(8)浇口优化分析。浇口优化分析时不需要事先设置浇口位置。成型工艺条件采用默认。双击方
6、案任务视察中的“立即分析”,系统弹出1-15所示的信息提示对话框,单击“确定”按钮开始分析。当屏幕中弹出分析完成对话框时,如图1-16所示,表面分析结束。方案任务视窗中显示分析结果,如图1-17所示。 图1-15 信息提示对话框 图1-16 分析完成图1-17 方案任务视窗分析日志窗口中的GATE信息的最后部分给出了最佳的浇口位置结果,如图1-18所示,最佳的位置出现在N208节点附近。选中图1-17所示的方案任务视窗中的“最佳浇口位置”复选框,模型显示区域会给出结果图像。如图1-19所示。图1-18 结果概要 图1-19 结果图像(9)复制模型。完成最佳浇口位置设置后,下面进行产品初步分析。
7、首先从最佳浇口位置分析中复制模型。在工程管理视窗中右击已经完成分析的LP_1study,在弹出的快捷菜单中选择“复制”命令。此时在工程管理窗口中出现了LP_1study(copy),然后双击该图标,如图1-20所示。图1-20 复制工程(10)设定分析类型。产品初步成型分析包括“流动+翘曲”。双击方案任务视窗中的图标,系统弹出“选择分析顺序”对话框,如图1-21所示。选择“流动+翘曲”,单击“确定”按钮,完成分析类型的选定,如图1-22所示。 图1-21“选择分析顺序”对话框 图1-22 方案任务发生变化 (11)设定注射位置。根据优化结果,选择最佳浇口位置节点N208。在工具栏上“选择”文本
8、框中如图1-23输入“N208”,按“enter”键,即选中节点N208,双击方案任务视窗中的,此时光标变为“十”字,选择模型上粉红色的节点N208,浇口位置设定完毕,如图1-24所示。 图1-23 选择查找图1-24 浇口位置设定完毕(12)工艺参数设定。本例采用默认的工艺参数,双击方案任务视窗中的图标,系统弹出“成型参数设置向导“对话框,如图1-25所示。采用默认值,单击“下一步”按钮,进入“成型参数向导”对话框的第二页,选中“分离翘曲原因”复选框。单击“完成”按钮,结束工艺过程参数的定义,如图1-26所示。 图1-25 “成型参数设置向导”对话框 图1-26 “成型参数设置向导”对话框2
9、(13)分析计算方案任务视窗中各项任务前出现图标,表明该任务已经设定。即可进行计算。双击“立即分析图标”,MPI求解器开始计算。最后弹出“分析完成”菜单栏,分析结束。(14)结果查看。分析结束后,MPI生成大量的文字,图像和动画结果,分类显示在方案任务视窗中,由于分析结果内容太多,这里仅介绍与本例相关的计算。填充时间:选择“填充时间”复选框,显示填充时间按结果,如图1-27所示,总时间为19.57s。 图1-27 填充时间也可以以动态的方式显示熔料充填型腔过程。即蒂娜及工具栏上的动画播放器图标。气穴位置:选择“气穴”复选框,显示气穴位置,如图1-28所示,主要出现在脸盆制品的边缘。 图1-28
10、 气穴位置熔接痕位置:选择“熔接痕”复选框,显示熔接痕位置,如图1-29所示,主要在脸盆制品的边缘。 图1-29 熔接痕位置锁模力:XY曲线图。选择锁模力:XY 复选框,显示填充过程中锁模力变化曲线,如图1-30所示。 图1-30 锁模力变化曲线(14)翘曲结果分析翘曲结果显示成型制品的总体变形量,X方向变形量,Y方向变形量,Z方向变形量。总变形量,X方向变形量,Y方向变形量,Z方向变形量。如图1-311-34所示。图1-31 总体变形量 图1-31 X方向变形量 图1-32 Y方向变形量 图1-33 Z方向变形量(15)生成报告。单击选择“填充时间”,选择“报告”,“添加动画”,在工程栏中加
11、入REPORT如图1-34所示。双击REPROT,弹出“MOLDFLOW PLASTICSINSIGHT REPORT”如图1-35所示。图1-34 工程窗口图 1-35 Moldflow Plastics Insight Report实训二 网格划分2.1 Moldflow应用实例以如下图2-1所示的按摩器为例,演示网格的划分过程。一般情况先自动对模型进行网格划分,有必要的情况下对局部细节进行手工网格划分,以此来提高划分网格的总体质量。 图2-1 按摩器模型(1)新建工程。启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。在“工程名称”文本框中输入“anmo”,指定创建位置的文件路
12、径,单击“确定”按钮创建一新工程。此时在工程管理视窗中显示了“anmo”的工程。 图2-2 “创建新工程”对话框 (2)导入模型。选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。选择STL文件进行导入。选择文件“anmo.stl”。单击“打开”按钮,系统弹出如图2-3所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫米。 图2-3 导入选项 Moldflow MPI 有3种网格类型,即中面网格(Midplane),表面网格(Fusion),实体网格(3D),根据分析类型搭配网格类型。中面网格:中面网格模型是由三
13、节点的三角形单位组成的,网格创建在模型壁厚的中间处形成的单层网格。在创建中面网格的过程中,要实时提取模型的壁厚信息,并赋予相应的三角形单元。表面网格:表面网格由三节点的三角形单元组成的,与中面网格不同,它是创建在模型的上下表面上。实体网格:实体网格是由四面体单元组成的,每个四面体单元优4个Midplane模型的三角形单元组成,3D网格可以更为精确地进行三维流道仿真。(3)网格划分。网格划分。网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。双击方案任务图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如
14、图2-4所示。一般情况下采用默认边长进行网格划分。网格划分好如图2-5所示。单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。网格划分信息可以在模型显示区域下方“网格日志”中查看。 图2-4 “生成网格”定义信息 图2-5 网格自动划分结果 (4)网格局部手工划分。MPI在进行网格划分时,一般仅在产品平直区域保证网格大小与预设值一致,对于曲面或圆弧区域,以及一些小的结构细节处,MPI会根据实际情况自动调小网格边长,但质量往往不佳,因此需要通过手工划分来完善网格。局部网格手工划分操作方法,首先选取要重新划分的网格区域,在选择“网格”,“网格工具”,“重新划分网格”命令,如图2-6所示
15、。系统弹出“重新划分网格”定义信息,如图2-7所示。 图2-6 选择命令 图2-7 “重新划分网格”定义信息在图2-7中“选择要重新划分网格实体”栏是提供用户选择要重新划分的区域,如图2-8所示的深色单元。在“目标边长度”文本框中输入重新划分的单元边长,现在将原来的边长3换为5,单击“应用”按钮,系统自动对所选的网格进行重新划分,结果如图2-9所示。 图2-8 选择重新划分的区域 图2-9 网格重新划分(5)网格状态统计。网格检验与修补的目的是为了检验出模型中存在的不合理网格,将其修改成合理网格,便于MOLDFLOW顺利求解。选择“网格”,“网格统计”命令,系统弹出“网格统计”对话框,如图2-
16、10所示。图2-10 “网格统计”对话框“网格统计”对话框显示模型的纵横比范围为1.19000479.272000,匹配率达到72.5,重叠单元个数为0,自动划分网格的按摩器网格匹配率一般,需要调整,调整方法在下面章节介绍。实训三 网格处理3.1网格划分与处理应用实例本节如图3-1所示按摩器为例,演示网格处理方法。一般情况下,自动划分网格模型多少会存在缺陷,这些缺陷往往是网格质量低下的主要原因,因此要对网格模型进行修补处理,提高网格质量。 图3-1 自动划分网格(1)网格处理。根据网格统计信息,如图2-10所示,如何提高匹配率,最佳的处理方法是修改网格边长,网格平均边长越小,网格精度越高,匹配
17、度也越高。本例中网格数为9334个,匹配度为72.3%。因此可以通过缩短网格的平均长度来提高匹配率。双击方案任务视窗中的,“工具”页面显示“生成网格”定义信息,选中“重新划分网格”复选框,如图3-2所示。将默认的边长3.85改为3.0。单击“立即划分网格”按钮,系统对自动网格进行重新划分,划分后的网格如图3-3所示。网格统计如图3-4所示。图3-2 “生成网格”定义信息 图3-3 重新划分后的网格 图3-4 “网格统计”对话框重新划分好的网格数9996个,纵横比范围1.15900048.75000。匹配度80.6%,满足冷却和翘曲分析要求。3.2 网格自动修补Moldflow提供的网格自动修补
18、功能能够自动搜索并处理模型中存在的单位交叉和单元重叠问题,同时可以改进单元的纵横比,对表面模型非常有效,但该功能不能完全解决所有网格中存在的问题。操作方法:选择“网格”,“网格工具”,“自动修复”命令,“工具”页面显示如图3-5所示的“自动修复”定义信息。图3-5 “自动修复”定义信息单击“应用”按钮,系统自动修补所有的交叉和重叠网格单元,改善网格的纵横比。3.3 纵横比处理纵横比处理功能可以降低模型网格的最大纵横比,使其接近所给出的目标值。操作方法:选择“网格”,“网格工具”,“修改纵横比”命令,“工具”页面中显示如图3-6所示的“修改纵横比”定义信息。在“目标最大纵横比”文本框中输入用户所
19、需的数值。 图3-6 “修改纵横比”定义信息3.4 网格自动合并选择“网格”,“网格工具”,“整体合并”命令,“工具”页面显示如图3-7所示的“整体合并”定义信息。黄色空格出现合并公差默认值,本例设置合并公差为0.5,单击“应用”按钮,合并报告显示“合并的节点数:242”,如图3-8所示。 图3-7 “整体合并”定义信息 图3-8 整体合并结果信息实训四 分析类型与材料选择4.1 MPI分析应用实例 在设置浇口位置之前应进行浇口位置分析,依据分析结果设置浇口位置,从而避免由于浇口位置设置不当可能引起的制件缺陷。以按摩器为例进行最佳浇口位置分析,实例模型如图4-1所示。图4-1 实例模型(1)
20、选择“文件”,“打开工程”,系统弹出“打开工程”对话框,选择.mpi,单击“打开”按钮,此时在工程管理视窗中显示“工程anmo”。在模型区显示已经划分好网格的按摩器网格模型。如图4-2所示。 (2)选择材料。按摩器的成型材料为PC,选择“分析”,“选择材料”命令,或者双击方案任务视窗中的图标,系统弹出“选择材料”对话框如图4-3所示。 图4-2 按钮器网格模型 图4-3 “选择材料”对话框(3)搜索材料。在图4-3所示的对话框中,“常用材料”栏为空,因此用户需要搜索的方法查找材料。单击“搜索”按钮,系统弹出如图4-4所示的“搜索标准”对话框,在“搜索字段”列表框中选择“材料名称缩写”,在“子字
21、符串”文本框中输入“PC”。单击“搜索”按钮,系统进入“选择 热塑性塑料”对话框,如图4-5所示。 图4-4 “搜索标准”对话框 图4-5 “选择热塑性”对话框(4)选择目标材料。单击目标材料,如图4-5所示中的15号,用户可以单击“详细资料”按钮来查看PC塑料特性,如图4-6所示,单击“确定”按钮回到图4-5所示的“选择热塑性塑料“对话框。图4-6 “热塑性塑料”对话框(5)确定材料。在“选择热塑性塑料”对话框中单击“选择“按钮,回到“选择材料”对话框,对话框中“制造商”和“牌号”已改变。单击“确定”按钮完成材料的选择。此时,方案任务视窗中的材料显示为,如图4-7所示。 图4-7 方案任务视
22、窗(6)设置分析类型MPI默认的分析类型为“充填”,现将分型类型设置为“浇口位置”,设置方法为,双击任务视窗中的图标,进入“选择分析顺序”对话框,选择“浇口位置”如图4-8所示。单击“确定”按钮,分析类型设置为“浇口位置”,如图4-9所示。 图4-8 “选择分析顺序”对话框 图4-9 设定分析类型Moldflow以不同的图标显示不同类型的分析,方便观察当前的分析类型。充填分析:模拟熔体从进入模型开始,到熔体到达模具型腔的末端过程。计算模腔被填满过程中,流动前沿位置。预测制品在相关工艺参数设置下的充填行为,获得最佳的浇注系统设计。流动分析:用于预测热塑性高聚物在模具内的流动,MPI模拟从注塑点开
23、始逐渐扩散到相邻的流动前沿,直到流动前沿扩展并充填制品上最后一个点,完成流动分析。目的是获得最佳的保压阶段设置。冷却分析:用来分析模具内的热传递,主要包含塑件和模具温度,冷却时间等,目的是判断制品冷却效果的优劣,计算出冷却时间,确定成型周期。翘曲分析:用于判定采用热塑性材料成型的制品是否会出现翘曲,如果出现翘曲的话,查出翘曲原因。(7)分析求解双击方案任务视窗中的,提交分析,系统弹出如图4-10所示的提示框单击“确定”按钮,“分析日志”页面显示最佳浇口分析过程信息,如图4-11所示,方便查看信息。图4-10 选择分析类型提示框 图4-11 “分析日志”页面(8)查看结果MPI为用户提供了结果彩
24、图,便以用户客观的选择合理的浇口位置。选择方案任务视窗中的复选框,在模型显示区域出现分析结果如图4-12所示。 图4-12 最佳浇口位置由于按摩器结构因素,考虑到外观美观,不能将浇口放在其表面,只能放在边缘。实训五 浇注系统创建 本例讲解按摩器上盖的一模两腔的浇注系统创建过程,如图5-1所示。 图5-1 示例模型(1) 选择“文件”,“打开工程”,系统弹出“打开工程”对话框,选择.mpi,单击“打开”按钮,此时在工程管理视窗中显示“工程anmo”。在模型区显示已经划分好网格的按摩器网格模型。如图5-2所示。图5-2 按钮器网格模型(2)采用手工方式创建一模两件。先将整个模型朝z方向移动20mm
25、。选择“建模”,“移动”,“平移”命令,工具页面显示“平移”定义信息,如图5-3所示。框选整个模型,在“矢量”文本框中输入(0 0 20),单击“应用”按钮,整个模型朝Z方向移动20 mm。用镜像方式复制模型。选择“建模”,“复制”,“镜像”命令,工具页面显示“镜像”定义信息,如图5-4所示。镜像平面选择XY平面,采用复制方式镜像,单击“运用”按钮,模型被镜像,一模两件创建完毕,如入5-5所示。 图5-3 “平移”定义信息 图5-4 “镜像”定义信息 图5-5 一模两件(3)创建浇口中心线查找节点N4532和节点N9197,分别偏移5mm。偏移节点N4532。选择“建模”,“移动”,“平移”命
26、令,“工具”页面显示“复制”定义信息如图5-6所示。在“矢量”文本框中输入(0 0 -5)。以同样的方法对节点N9197进行偏移。节点偏移结果如图5-6所示。 图5-6 节点偏移结果创建浇口中心线。选择“建模”,“创建直线”,“直线”命令,“工具”页面显示“创建直线”定义信息,如图5-7所示。分别选择节点N4532和节点N9197,单击“选择选项”选项组右边按钮,设置浇口形状参数,弹出如图5-8所示“赋新属性”对话框。创建新的直线属性,单击图5-8所示的“新建”按钮,选择“冷浇口”,弹出5-9所示的对话框,设定截面形状为圆形,外形为椎体。 图5-7 “创建直线”对话框 图5-8 “指定属性”对
27、话框 图5-9 “冷浇口”对话框 再次单击图5-9中的“编辑尺寸”按钮,弹出“截面尺寸”对话框,设定始端直径为3.5 mm,锥角度为15deg,如图5-10所示。 图5-10 截面尺寸定义单击“确定”按钮,返回到图5-9中,单击“应用”按钮,生成浇口中心线,同样的方法创建第二条浇口中心线。如图5-11所示。 图5-11 浇口中心线(3)创建分流道中心线创建中间点。选择“建模”,“创建节点”,坐标中间创建节点“命令,“工具”页面显示“坐标中间创建节点”定义信息,如图5-12所示。选择两个浇口末端节点,单击“应用“按钮,生成如图5-13所示的中间节点。 图5-12 “坐标中间创建节点”对话框 图5
28、-13 生成中间节点创建分流道中心线。选择“建模”,“创建直线”,“直线”命令,“工具”页面显示“创建直线”定义,单击,设置浇口形状参数,设置截面形状为圆形,外形为柱体。再次单击“编辑尺寸”按钮,弹出“截面尺寸”对话框,定义分流道截面直径为5 mm。单击“确定”按钮,单击“应用”按钮,生成分流道中心线,如图5-14所示。 图5-14 分流道中心线(4)创建分流道中心线创建主流道始端节点。选择“建模”,“创建节点”,“按偏移”命令,“工具页面显示”偏移创建节点“定义,如图5-15所示,选择中间节点,偏移量为(-50 0 0),数量为1。单击“应用“按钮得到如图5-16所示的新节点。 图5-15
29、“偏移创建节点”对话框 图5-16 主流道始端节点创建主流道中心线,选择“建模”,“创建直线”,“直线”命令,“工具”页面显示“创建直线”,单击按钮,设置浇口形状参数,选择主流道,单击编辑设定主流道外形为椎体,再次单击“编辑尺寸”按钮,进入“截面尺寸”对话框。设定始端直径为3.5 mm,锥度角为3deg,单击“确定”按钮,单击“应用”按钮。得到主流道中心线。如图5-17所示。 图5-17 主流道中心线(5)浇口网格划分创建的流道和浇口中心线要划分网格才能参与计算。选择“网格”,“生成网格”命令,如图5-18生成的流道。 图5-18 浇注系统网格模型实训六 MPI充填分析充填分析为模拟塑料从注射
30、到模腔被填满整个过程,预测制品在模型中的填充行为。模拟结果包括填充时间,压力,流动前沿温度,分子趋向,剪切速度,气穴,熔接痕等,这里以按摩器上盖填充过程,示例模型及分析结果,如图6-1所示。(1)打开工程打开一模两件按摩器上盖模型。(2) 设置分析类型双击方案任务栏中的图标,如图6-2所示,系统弹出“选择分析顺序”对话框,如图9-3所示。 图9-2 方案任务窗口 图9-3 “选择分析顺序”对话框在“选择分析顺序”对话框中选择“填充”,单击“确定”按钮,此时任务类型显示“填充”。(3) 材料选择按摩器材料选择选择为默认的PP。(4) 设定注射位置双击方案任务栏中的图标,单击主流道入口节点,注射位
31、置设定完成。如图9-4所示。 图9-4 设定注射位置(5) 工艺过程参数设置 双击方案任务视窗中的,弹出图9-5所示的对话框。接受默认选项。 图9-5 工艺参数(6) 提交分析双击方案任务视窗中的立即分析图标,求解开始分析计算。(7) 填充分析结果充填时间:如图9-6所示,充填时间是1.105S 图9-6 充填时间流动前沿温度:流动前沿温度如图9-7所示,显示流动前沿温度分布情况,温度差异为4,表示该模型温差不大,较合理。 图9-7 流动前沿温度体积温度分布:该结果可以发现产品在注射过程中温度较高的区域,如果最高平均温度接近或超过材料的讲解温度,或者局部过热,要求用户重新设置浇注系统或者冷却系统。图9-8所示平均温度,模腔内最高平均温度为233.2 图9-8 体积温度气穴位置:气穴位置,气穴位置结果提醒用户所需开始的排气位置。图9-9显示了按摩器上盖上的气穴。图9-9 气穴位置熔接痕:熔接痕显示塑料在凝固时的熔接问题。熔接痕直接影响到塑件的质量。如图9-10所示。 图9-10 熔接痕压力分布:压力分布情况显示充填后,模腔内及其流道上的压力分布,如图9-11所示,进料口出最大压力为12.27MPA,模腔内最大压力位8.182MPA。 图9-12 压力分布锁模力曲线:锁模力曲线,图9-13显示锁模力随时间的变化情况,给用户提供锁模力参考,最大值为5.1T。 图9-13 锁模力曲线
限制150内