最新-2019浙江省宁波市北仑区九年级(上)期末数学试卷.doc
《最新-2019浙江省宁波市北仑区九年级(上)期末数学试卷.doc》由会员分享,可在线阅读,更多相关《最新-2019浙江省宁波市北仑区九年级(上)期末数学试卷.doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品资料2018-2019浙江省宁波市北仑区九年级(上)期末数学试卷.2018-2019学年省市北仑区九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1(3分)若,则()ABCD2(3分)下列说确的是()A“打开电视机,正在播放新闻联播”是不可能事件B“两直线被第三条直线所截,同位角相等”是必然事件C天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D“篮球队员在罚球线上投篮一次,投中”为随机事件3(3分)下列几何体中,左视图不是矩形的是()A圆柱B正四棱锥C体D直三棱柱4(3分)如图,AB是O的直径,CD是O的弦,连接AC、AD,若BAD27,则ACD的大小为()
2、A73B63C54D535(3分)下列对二次函数y2x2+x的图象的描述,正确的是()A开口向下B对称轴是xC经过原点D当x0时,y随x值的增大而增大6(3分)如图是某几何体的三视图,这个几何体的侧面积是()A6B2CD37(3分)如图,AD、AE和BC分别切O于点D、E、F,如果AD18,则ABC的周长为()A18B27C36D548(3分)如图,在RtABC中,BCA90,DCA30,AC,AD,则BC的长为()AB5C或D2或59(3分)已知对于抛物线y12x2+2,直线y22x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;若y1y2,记M
3、y1y2例如:当x1时,y10,y24,y1y2,此时M0下列判断:当x0时,My2;当x0时,M随x值的增大而增大;M2;使得M1的x值是或其中正确的个数是()A1个B2个C3个D4个10(3分)如图1,若ABC一点P满足PACPBAPCB,则点P为ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(ALCrelle17801855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡( Brocard18451922)重新发现,并用他的名字命名问题:如图2,在等腰DEF中,DFEF,FG是DEF
4、的中线,若点Q为DEF的布洛卡点,FQ9,则DQ+EQ()A10BC6+6D7二、填空题(每小题3分,共24分)11(3分)在ABC中,BC4,AC3,AB5,则tanA的值为 12(3分)把抛物线yx2+x向下平移3个单位,则平移后抛物线的解析式为 13(3分)从2019,2019,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是 14(3分)如图,四边形ABCD四边形EFGH,AD100,G65,则F 15(3分)如图,小明自制一块乒乓球拍,正面是半径为8cm的O,90,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为 16(3分)如图,在ABCD中,AF、BE分别平分DAB、
5、ABC,点G是AF、BE的交点,AB5,BC3,则SEFG:SABG 17(3分)如图,已知点A(3,3),点B(0,2),点A在二次函数yx2+bx9的图象上,作射线AB,再将射线AB绕点A按逆时针方向旋转45,交二次函数图象于点C,则点C的坐标为 18(3分)如图,已知点C是以AB为直径的半圆的中点,D为弧AC上任意一点,过点C作CEBD于点E,连接AE,若AB4,则AE的最小值为 三、解答题(共46分)19(5分)计算:sin60+cos245sin30tan6020(6分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有
6、一条笔直的公路l,其间设有区间测速数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速在l外取一点P,作PCl,垂足为点C测得PC40米,APC64,BPC25一汽车从点A到点B用时4秒,求这辆汽车在该路段的平均速度(参考数据:sin250.42,cos250.91,tan250.47,sin640.90,cos640.44,tan642.05)21(6分)如图,网格中的每个小形的边长为1个单位长度,ABC的顶点均在格点上(1)将ABC绕点A顺时针旋转90得ADE(B的对应点是D,C的对应点是E),请画出ADE(2)连接BE,在图中所给的网格中找一个格点F,使得BEF
7、BCA22(6分)一个不透明的布袋里装有6个白球,2个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为(1)布袋里红球有多少个?(2)小亮和小丽将布袋中的白球取出5个,利用剩下的球进行摸球游戏,他们约定:先摸出1个球后不放回,再摸出1个球,若两个球中有红球则小亮胜,否则小丽胜,你认为这个游戏公平吗?请用列表或画树状图说明理由23(6分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点D,且AECD,垂足为点E(1)求证:直线CE是O的切线;(2)若BC6,CD6,求弦AD的长24(8分)如图,在平面直角坐标系中,二次函数y与x轴交A、B两点(点A在
8、点B的左侧),经过点B的直线l与y轴交于点C,与抛物线的另一个交点为D,且CD3BC(1)求点B的坐标及直线l的函数表达式;(2)点E在y轴正半轴上,且EDEC,求OE的长;(3)点F是抛物线上第一象限的一点,以F为圆心的圆与直线l相切,切点为G,且以点D、F、G为顶点的三角形与BOC相似,求点F的坐标25(9分)如图,AB是O的直径,弦BCOB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G(1)求DGE的度数;(2)若,求的值;(3)记CFB,DGO的面积分别为S1,S2,若k,求的值(用含k的式子表示)2018-2019学年省市北仑区九年级(上)期末数学试卷参考答案与
9、试题解析一、选择题(每小题3分,共30分)1(3分)若,则()ABCD【分析】利用合比性质解答【解答】解:由,得故选:A【点评】考查了比例的性质,合比性质:若,则2(3分)下列说确的是()A“打开电视机,正在播放新闻联播”是不可能事件B“两直线被第三条直线所截,同位角相等”是必然事件C天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D“篮球队员在罚球线上投篮一次,投中”为随机事件【分析】直接利用概率的意义以及随机事件的概念分别分析得出答案【解答】解:A“打开电视机,正在播放新闻联播”是随机事件,不符合题意;B“两直线被第三条直线所截,同位角相等”是随机事件,不符合题意;C天
10、气预报说“明天的降水概率为40%”,表示明天有40%的可能性都在降雨,不符合题意;D“篮球队员在罚球线上投篮一次,投中”为随机事件,符合题意;故选:D【点评】此题主要考查了概率的意义,正确掌握概率的意义是解题关键3(3分)下列几何体中,左视图不是矩形的是()A圆柱B正四棱锥C体D直三棱柱【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解【解答】解:A左视图是矩形;B左视图是三角形;C左视图是形,属于矩形;D,左视图是矩形;故选:B【点评】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图4(3分)如图,AB是O的直径,CD是O的弦,连接AC、AD,若BAD2
11、7,则ACD的大小为()A73B63C54D53【分析】先利用圆周角定理得到ADB90,利用互余计算出ABD63,然后根据圆周角定理得到ACD的度数【解答】解:连接BD,如图,AB是O的直径,ADB90,ABD90BAD902763,ACDABD63故选:B【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径5(3分)下列对二次函数y2x2+x的图象的描述,正确的是()A开口向下B对称轴是xC经过原点D当x0时,y随x值的增大而增大【分析】由二次函数的性质利用二次函数的性质可排除A
12、,B,D选项,再利用二次函数图象上点的坐标特征可求出二次函数y2x2+x的图象经过原点【解答】解:a2,b1,c0,二次函数y2x2+x的图象开口向上;对称轴为直线x;在对称轴左侧,y随x值的增大而增大,在对称轴右侧,y随x值的增大而减小,选项A,B,D不正确;当x0时,y2x2+x0,二次函数y2x2+x的图象经过原点,选项C正确故选:C【点评】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键6(3分)如图是某几何体的三视图,这个几何体的侧面积是()A6B2CD3【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为1
13、,高为3,利用勾股定理求得圆锥的母线长为,代入公式求得即可【解答】解:由三视图可知此几何体为圆锥,圆锥的底面半径为1,高为3,圆锥的母线长为,圆锥的底面周长等于圆锥的侧面展开扇形的弧长,圆锥的底面周长圆锥的侧面展开扇形的弧长2r212,圆锥的侧面积lr2,故选:C【点评】本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积7(3分)如图,AD、AE和BC分别切O于点D、E、F,如果AD18,则ABC的周长为()A18B27C36D54【分析】根据切线长定理,将ABC的周长转化为切线长求解【解答】解:据切线长定理有ADAE,BEBF,CDCF;则ABC的
14、周长AB+BC+ACAB+BF+CF+ACAB+BE+AC+CD2AD36故选:C【点评】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长8(3分)如图,在RtABC中,BCA90,DCA30,AC,AD,则BC的长为()AB5C或D2或5【分析】过D作DEAC于E,设DEx,先根据直角三角形30度角的性质和勾股定理得:x的值,分情况根据三角形相似列比例式计算可得BC的长【解答】解:如图,过D作DEAC于E,设DEx,ACD30,CEx,AEx,RtADE中,由勾股定理得:AD2DE2+AE2,18x227x+100,(3x2)(6x5
15、)0,解得:,当x时,DEBC,ADEABC,BC2,当x时,同理得:,BC5,综上,BC的长为2或5;故选:D【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键9(3分)已知对于抛物线y12x2+2,直线y22x+2,当x任取一值时,x对应的函数值分别为y1、y2若y1y2,取y1、y2中的较小值记为M;若y1y2,记My1y2例如:当x1时,y10,y24,y1y2,此时M0下列判断:当x0时,My2;当x0时,M随x值的增大而增大;M2;使得M1的x值是或其中正确的个数是()A1个B2个C3个D4个【分析】当x0时,一次函数图
16、象位于二次函数上方,可对做出判断;当x0,两个函数的函数随着x的增大而增大,故可对做出判断;当x0时,My1y2有最大值2,故可对做出判断;分别令y11,y21结合图象可求得x的取值【解答】解:当x0时,一次函数图象位于二次函数上方,y2y1,My1,故错误;当x0,两个函数的函数随着x的增大而增大,M随x值的增大而增大,故正确;当x0时,函数My1y22,故错误;令y11,即:2x2+21解得:x1,x2(不合题意舍去)令y21,得:2x+21,解得:x故正确故选:B【点评】本题主要考查的是函数与不等式的关系,根据理解函数图象与不等式(不等式组)之间的关系是解题的关键10(3分)如图1,若A
17、BC一点P满足PACPBAPCB,则点P为ABC的布洛卡点,三角形的布洛卡点(Brocardpoint)是法国数学家和数学教育家克洛尔(ALCrelle17801855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡( Brocard18451922)重新发现,并用他的名字命名问题:如图2,在等腰DEF中,DFEF,FG是DEF的中线,若点Q为DEF的布洛卡点,FQ9,则DQ+EQ()A10BC6+6D7【分析】由等腰三角形的性质和勾股定理可求EF的长,通过证明DQEEQF,可得 ,即可求解【解答】解:DFEF,FG是DEF的中线,D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 2019 浙江省 宁波市 北仑区 九年级 期末 数学试卷
限制150内