不等式同步练习及详解答案.doc
《不等式同步练习及详解答案.doc》由会员分享,可在线阅读,更多相关《不等式同步练习及详解答案.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流不等式同步练习及详解答案【精品文档】第 15 页不等式的概念与性质同步练习测试题 学习目标1了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2理解不等式的基本性质及其证明. 基础训练题一、选择题1设a,b,cR,则下列命题为真命题的是( )(A)abacbc(B)abacbc(C)aba2b2(D)abac2bc22若1ab1,则ab 的取值范围是( )(A)(2,2)(B)(2,1)(C)(1,0)(D)(2,0)3设a2,b2,则ab与ab的大小关系是( )(A)abab(B)abab(C)abab(D)不能确
2、定4使不等式ab和同时成立的条件是( )(A)ab0(B)a0b(C)ba0(D)b0a5设1x10,则下列不等关系正确的是( )(A)lg2xlgx2lg(lgx)(B)lg2xlg(lgx)lgx2(C)lgx2lg2x1g(lgx)(D)lgx2lg(lgx)lg2x二、填空题6已知ab0,c0,在下列空白处填上适当不等号或等号:(1)(a2)c_(b2)c; (2)_; (3)ba_|a|b|.7已知a0,1b0,那么a、ab、ab2按从小到大排列为_.8已知60a84,28b33,则ab的取值范围是_;的取值范围是_.9已知a,b,cR,给出四个论断:ab;ac2bc2;acbc.以
3、其中一个论断作条件,另一个论断作结论,写出你认为正确的两个命题是_;_.(在“”的两侧填上论断序号).10设a0,0b1,则P与的大小关系是_.三、解答题11若ab0,m0,判断与的大小关系并加以证明.12设a0,b0,且ab,.证明:pq.注:解题时可参考公式x3y3(xy)(x2xyy2). 拓展训练题13已知a0,且a1,设Mloga(a3a1),Nloga(a2a1).求证:MN.14在等比数列an和等差数列bn中,a1b10,a3b30,a1a3,试比较a5和b5的大小.均值不等式同步练习测试题 学习目标1了解基本不等式的证明过程.2会用基本不等式解决简单的最大(小)值问题. 基础训
4、练题一、选择题1已知正数a,b满足ab1,则ab( )(A)有最小值(B)有最小值(C)有最大值(D)有最大值2若a0,b0,且ab,则( )(A)(B)(C)(D)3若矩形的面积为a2(a0),则其周长的最小值为( )(A)a(B)2a(C)3a(D)4a4设a,bR,且2ab20,则4a2b的最小值是( )(A)(B)4(C)(D)85如果正数a,b,c,d满足abcd4,那么( )(A)abcd,且等号成立时a,b,c,d的取值唯一(B)abcd,且等号成立时a,b,c,d的取值唯一(C)abcd,且等号成立时a,b,c,d的取值不唯一(D)abcd,且等号成立时a,b,c,d的取值不唯
5、一二、填空题6若x0,则变量的最小值是_;取到最小值时,x_.7函数y(x0)的最大值是_;取到最大值时,x_.8已知a0,则的最大值是_.9函数f(x)2log2(x2)log2x的最小值是_.10已知a,b,cR,abc3,且a,b,c成等比数列,则b的取值范围是_.三、解答题11四个互不相等的正数a,b,c,d成等比数列,判断和的大小关系并加以证明.12已知a0,a1,t0,试比较logat与的大小. 拓展训练题13若正数x,y满足xy1,且不等式恒成立,求a的取值范围.14(1)用函数单调性的定义讨论函数f(x)x(a0)在(0,)上的单调性;(2)设函数f(x)x(a0)在(0,2上
6、的最小值为g(a),求g(a)的解析式.一元二次不等式及其解法同步练习测试题 学习目标1通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系.2会解简单的一元二次不等式. 基础训练题一、选择题1不等式5x4x2的解集是( )(A)x|x1,或x4(B)x|4x1(C)x|x4,或x1(D)x|1x42不等式x2x20的解集是( )(A)x|x1,或x2(B)x|2x1(C)R(D)3不等式x2a2(a0)的解集为( )(A)x|xa(B)x|axa(C)x|xa,或xa(D)x|xa,或xa4已知不等式ax2bxc0的解集为,则不等式cx2bxa0的解集是( )(A)x|3x(B
7、)x|x3,或x(C)x2x(D)x|x2,或x5若函数ypx2px1(pR)的图象永远在x轴的下方,则p的取值范围是( )(A)(,0)(B)(4,0(C)(,4)(D)4,0)二、填空题6不等式x2x120的解集是_.7不等式的解集是_.8不等式|x21|1的解集是_.9不等式0x23x4的解集是_.10已知关于x的不等式x2(a)x10的解集为非空集合x|ax,则实数a的取值范围是_.三、解答题11求不等式x22ax3a20(aR)的解集.12k在什么范围内取值时,方程组有两组不同的实数解? 拓展训练题13已知全集UR,集合Ax|x2x60,Bx|x22x80,Cx|x24ax3a20.
8、(1)求实数a的取值范围,使C (AB);(2)求实数a的取值范围,使C (UA)(UB).14设aR,解关于x的不等式ax22x10.不等式的实际应用同步练习测试题 学习目标会使用不等式的相关知识解决简单的实际应用问题. 基础训练题一、选择题1函数的定义域是( )(A)x|2x2(B)x|2x2(C)x|x2,或x2(D)x|x2,或x22某村办服装厂生产某种风衣,月销售量x(件)与售价p(元/件)的关系为p3002x,生产x件的成本r50030x(元),为使月获利不少于8600元,则月产量x满足( )(A)55x60(B)60x65(C)65x70(D)70x753国家为了加强对烟酒生产管
9、理,实行征收附加税政策.现知某种酒每瓶70元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100元征税r元,则每年产销量减少10r万瓶,要使每年在此项经营中所收附加税不少于112万元,那么r的取值范围为( )(A)2r10(B)8r10(C)2r8(D)0r84若关于x的不等式(1k2)xk44的解集是M,则对任意实常数k,总有( )(A)2M,0M(B)2M,0M(C)2M,0M(D)2M,0M二、填空题5已知矩形的周长为36cm,则其面积的最大值为_.6不等式2x2ax20的解集是R,则实数a的取值范围是_.7已知函数f(x)x|x2|,则不等式f(x)3的解集为_.8
10、若不等式|x1|kx对任意xR均成立,则k的取值范围是_.三、解答题9若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s甲0.1x0.01x2,s乙0.05x0.005x2问交通事故的主要责任方是谁? 拓展训练题1
11、1当x1,3时,不等式x22xa0恒成立,求实数a的取值范围.12某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm的空白,上下留有都为6cm的空白,中间排版面积为2400cm2.如何选择纸张的尺寸,才能使纸的用量最小?二元一次不等式(组)与简单的线性规划问题同步练习测试题 学习目标1了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 基础训练题一、选择题1已知点A(2,0),B(1,3)及直线l:x2y0,那么( )(A)A,B都在l上方(B)A,B都在l下方(C)A在l上方,B在l下方(D)A在l下方
12、,B在l上方2在平面直角坐标系中,不等式组所表示的平面区域的面积为( )(A)1(B)2(C)3(D)43三条直线yx,yx,y2围成一个三角形区域,表示该区域的不等式组是( )(A)(B)(C)(D)4若x,y满足约束条件则z2x4y的最小值是( )(A)6(B)10(C)5(D)105某电脑用户计划使用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )(A)5种(B)6种(C)7种(D)8种二、填空题6在平面直角坐标系中,不等式组所表示的平面区域内的点位于第_象限.7若不等式|2xym|3表示的平面区域
13、包含原点和点(1,1),则m的取值范围是_.8已知点P(x,y)的坐标满足条件那么zxy的取值范围是_.9已知点P(x,y)的坐标满足条件那么的取值范围是_.10方程|x|y|1所确定的曲线围成封闭图形的面积是_.三、解答题11画出下列不等式(组)表示的平面区域:(1)3x2y60 (2)12某实验室需购某种化工原料106kg,现在市场上该原料有两种包装,一种是每袋35kg,价格为140元;另一种是每袋24kg,价格为120元.在满足需要的前提下,最少需要花费多少元? 拓展训练题13商店现有75公斤奶糖和120公斤硬糖,准备混合在一起装成每袋1公斤出售,有两种混合办法:第一种每袋装250克奶糖
14、和750克硬糖,每袋可盈利0.5元;第二种每袋装500克奶糖和500克硬糖,每袋可盈利0.9元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14甲、乙两个粮库要向A,B两镇运送大米,已知甲库可调出100吨,乙库可调出80吨,而A镇需大米70吨,B镇需大米110吨,两个粮库到两镇的路程和运费如下表:路程(千米)运费(元/吨千米)甲库乙库甲库乙库A镇20151212B镇2520108问:(1)这两个粮库各运往A、B两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?不等式全章综合练习同步练习测试题基础训练题一、选择题1设a,b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 同步 练习 详解 答案
限制150内