线性回归方程的求法ppt课件.ppt
《线性回归方程的求法ppt课件.ppt》由会员分享,可在线阅读,更多相关《线性回归方程的求法ppt课件.ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、必修必修3(3(第二章第二章 统计统计) )知识结构知识结构 收集数据收集数据 ( (随机抽样随机抽样) )整理、分析数据整理、分析数据估计、推断估计、推断简单随机抽简单随机抽样样分层抽样分层抽样系统抽样系统抽样用样本估计总体用样本估计总体变量间的相关关系变量间的相关关系 用样本用样本的频率的频率分布估分布估计总体计总体分布分布 用样本用样本数字特数字特征估计征估计总体数总体数字特征字特征线性回归分析线性回归分析统计的基本思想统计的基本思想y = f(x)y = f(x)y = f(x)y = f(x)y = f(x)y = f(x)实际实际样本样本模模 拟拟抽抽 样样分分 析析两个变量的关系
2、两个变量的关系不相关不相关相关相关关系关系函数关系函数关系线性相关线性相关非线性相关非线性相关现实生活中两个变量间的关系有哪些呢?现实生活中两个变量间的关系有哪些呢?思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系 函数关系是一种理想的关系模型函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一相关关系在现实生活中大量存在,是更一般的情况般的情况 自变量取值一定时,因变量的取值带有一自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做定随机性的两个变量之间的关系叫做相关关系相关关系。1 1、定义:、定义: 1
3、1):相关关系是一种不确定性关系;):相关关系是一种不确定性关系;注注对具有相关关系的两个变量进行对具有相关关系的两个变量进行统计分析的方法叫统计分析的方法叫回归分析回归分析。2 2):):2 2、现实生活中存在着大量的相关关系。现实生活中存在着大量的相关关系。探索:水稻产量探索:水稻产量y y与施肥量与施肥量x x之间大致有何之间大致有何规律?规律?10 20 30 40 5010 20 30 40 50500500450450400400350350300300发现:图中各点,大致分布在某条直线附近。发现:图中各点,大致分布在某条直线附近。探索探索2 2:在这些点附近可画直线不止一条,:在
4、这些点附近可画直线不止一条, 哪条直线最能代表哪条直线最能代表x x与与y y之间的关系呢?之间的关系呢?x xy y施化肥量施化肥量水稻产量水稻产量施化肥量施化肥量x x 15 20 25 30 35 40 45 15 20 25 30 35 40 45水稻产量水稻产量y y 330 345 365 405 445 450 455 330 345 365 405 445 450 455散点图散点图10 20 30 40 50500450400350300 xy施化肥量施化肥量水稻产量水稻产量n n2 2iiiii=1i=1Q(a,b)=(y -bx -a) 取最小值时,a,b的值.Q(a,b
5、)=(y -bx -a) 取最小值时,a,b的值.iiii(x ,y )(x ,y )i ii i(x ,y )(x ,y )|i ii i|y -y|y -y怎样求回归直线?怎样求回归直线?最小二乘法:最小二乘法: y = bx+a(x,y)(x,y)称为样本点的中心称为样本点的中心。n n( (x x- - x x) )( (y y- - y y) )i ii ii i= =1 1b b = =n n2 2( (x x- - x x) )i ii i= =1 1a a = = y y - - b bx x. .n nn n1 11 1其其 中中 x x = =x x , ,y y = =y
6、 y . .i ii in nn ni i= =1 1i i= =1 1n niiiii=1i=1n n2 22 2i ii=1i=1x y -nxyx y -nxy=,=,x-nxx-nx(3 3)对两个变量进行的线性分析叫做)对两个变量进行的线性分析叫做线性回归分析线性回归分析。2 2、回归直线方程:、回归直线方程:n nn ni ii ii ii ii i= =1 1i i= =1 1n nn n2 22 22 2i ii ii i= =1 1i i= =1 1( (x x - - x x) )( (y y - - y y) )x x- - n nx xy yb b = = =, ,(
7、(x x - - x x) )x x- - n nx xa a = = y y - - b bx xy y(2 2)相应的直线叫做)相应的直线叫做回归直线回归直线。(1 1)所求直线方程)所求直线方程 叫做叫做回归直线方程回归直线方程; 其中其中 y = bx+ay = bx+a(注意回归直线一定经过样本点的中心)(注意回归直线一定经过样本点的中心)例例1 假设关于某设备的使用年限假设关于某设备的使用年限x和所有支出的维修费用和所有支出的维修费用y(万万元元)有如下的统计数据:有如下的统计数据:x23456Y2.23.85.56.57.0若由此资料所知若由此资料所知y对对x呈线性相关关系,试求
8、:呈线性相关关系,试求:1.回归直线方程回归直线方程2.估计使用年限为估计使用年限为10年时,维修费用是多少?年时,维修费用是多少?解题步骤:解题步骤:1.作散点图作散点图2.把数据列表,计算相应的值,求出回归系数把数据列表,计算相应的值,求出回归系数3.写出回归方程写出回归方程,并按要求进行预测说明。并按要求进行预测说明。例例2 (2007年广东)下表提供了某厂节能降耗技术改造后生产年广东)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量甲产品过程中记录的产量x(吨)与相应的生产能耗(吨)与相应的生产能耗y (吨标准吨标准煤煤)的几组对应数据。的几组对应数据。X3456y2.534
9、4.5(1)请画出上表数据的散点图请画出上表数据的散点图(2)请根据上表提供的数据,用最小二乘法求出请根据上表提供的数据,用最小二乘法求出y关于关于x的的 性回归方程性回归方程ybxa(3)已知该厂技改前已知该厂技改前100吨甲产品的生产能耗为吨甲产品的生产能耗为90吨标准吨标准 煤,试根据(煤,试根据(2)求出的线性回归方程,预测生产)求出的线性回归方程,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:(参考数值:3 2.54 3 5 46 4.566.5 )小结:求回归直线方程的步骤小结:求回归直线方程的步骤n nn ni
10、 ii ii ii ii i= =1 1i i= =1 1n nn n2 22 22 2i ii ii i= =1 1i i= =1 1( (x x - - x x) )( (y y - - y y) )x x- - n nx xy yb b = = =, ,( (x x - - x x) )x x- - n nx xa a = = y y - - b bx xy y(2 2)所求直线方程)所求直线方程 叫做叫做回归直线方程回归直线方程; 其中其中 y = bx+ay = bx+a(1)作散点图,通过图看出样本点是否呈条状分)作散点图,通过图看出样本点是否呈条状分 布,进而判断两个量是否具有线
11、性相关关系。布,进而判断两个量是否具有线性相关关系。(3)根据回归方程,并按要求进行预测说明。)根据回归方程,并按要求进行预测说明。相关系数相关系数 1.1.计算公式计算公式 2 2相关系数的性质相关系数的性质 (1)|r|1(1)|r|1 (2)|r|(2)|r|越接近于越接近于1 1,相关程度越大;,相关程度越大;|r|r|越接越接近于近于0 0,相关程度越小,相关程度越小 问题:达到怎样程度,问题:达到怎样程度,x x、y y线性相关呢?它线性相关呢?它们的相关程度怎样呢?们的相关程度怎样呢?n ni ii ii i= =1 1n nn n2 22 2i ii ii i= =1 1i i
12、= =1 1( (x x - - x x) )( (y y - - y y) )r r = =( (x x - - x x) )( (y y - - y y) )负相关负相关正相关正相关n n(x -x)(y -y)(x -x)(y -y)iiiii=1i=1r=r=nnnn2222(x -x) (y -y)(x -x) (y -y)iiiii=1i=1i=1i=1相关系数相关系数正相关;负相关通常,正相关;负相关通常, r r-1,-0.75-0.75-负相关很强负相关很强; ; r0.75,1正相关很强正相关很强; r-0.75,-0.3-负相关一般负相关一般; ; r0.3, 0.75正
13、相关一般正相关一般; r r-0.25, 0.25-0.25-相关性较弱相关性较弱; ; 第一章第一章 统计案例统计案例1.1回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用(第二课时)(第二课时)a. 比数学3中“回归”增加的内容数学统计1. 画散点图画散点图2. 了解最小二乘法了解最小二乘法的思想的思想3. 求回归直线方程求回归直线方程ybxa4. 用回归直线方程用回归直线方程解决应用问题解决应用问题选修-统计案例5. 引入线性回归模型引入线性回归模型ybxae6. 了解模型中随机误差项了解模型中随机误差项e产产生的原因生的原因7. 了解相关指数了解相关指数 R2 和模型拟和模
14、型拟合的效果之间的关系合的效果之间的关系8. 了解残差图的作用了解残差图的作用9. 利用线性回归模型解决一类利用线性回归模型解决一类非线性回归问题非线性回归问题10. 正确理解分析方法与结果正确理解分析方法与结果什么是回归分析:什么是回归分析:“回归回归”一词是由英国生物学家一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。在研究人体身高的遗传问题时首先提出的。 根据遗传学的观点,子辈的身高受父辈影响,以根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,记父辈身高,Y记子辈身高。记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,虽然
15、子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和和Y之间存在一种相关关系。之间存在一种相关关系。 一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。的身高有向中心回归的特点。“回归回归”一词即源于此。一词即源于此。 虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它虽然这种向中心回归的现象只是特定领域里
16、的结论,并不具有普遍性,但从它所描述的关于所描述的关于X为自变量,为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。回归含义是相同的。 不过,现代回归分析虽然沿用了不过,现代回归分析虽然沿用了“回归回归”一词,但内容已有很大变化,它是一种应用一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。回归分析的内容与步骤:回归分析的内容与步骤:统计检验通过后,最后是统计检验通过后,最后是利用
17、回归模型,根据自变量去估计、预测因变量利用回归模型,根据自变量去估计、预测因变量。 回归分析通过一个变量或一些变量的变化解释另一变量的变化。回归分析通过一个变量或一些变量的变化解释另一变量的变化。 其主要内容和步骤是,其主要内容和步骤是,首先根据理论和对问题的分析判断,首先根据理论和对问题的分析判断,将变量分为自变量和因变量将变量分为自变量和因变量;其次,设法其次,设法找出合适的数学方程式(即回归模型)找出合适的数学方程式(即回归模型)描述变量间的关系;描述变量间的关系;由于涉及到的变量具有不确定性,接着还要由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验对回归模型进行统计检验;例
18、例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm 165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点
19、图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的附近,而不是在一条直线上,所以不能用一次函数不能用一次函数y=bx+a描述它们关系。描述它们关系。 我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e,其中,其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。思考思考P3产生随机误差项产生随机误差项
20、e的原因是什么?的原因是什么?思考思考P4产生随机误差项产生随机误差项e的原因是什么?的原因是什么?随机误差随机误差e e的来源的来源( (可以推广到一般):可以推广到一般):1、其它因素的影响:影响身高 y 的因素不只是体重 x,可能 还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy可以提供选择模型的准则函数模型与回归模型之间的差别函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy 线性回归模型线性回归模型y=bx+a+
21、e增加了随机误差项增加了随机误差项e,因变量,因变量y的值由的值由自变量自变量x和随机误差项和随机误差项e共同确定,即共同确定,即自变量自变量x只能解析部分只能解析部分y的变的变化化。 在统计中,我们也把自变量在统计中,我们也把自变量x称为解析变量,因变量称为解析变量,因变量y称为预报变量。称为预报变量。例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359求根据一名女大学生的身高预报她的体
22、重的回归方程,并预报一名身高为求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。案例案例1:女大学生的身高与体重:女大学生的身高与体重解:解:1、选取身高为自变量、选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:2、由散点图知道身高和体重有比较好的、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程线性相关关系,因此可以用线性回归方程刻画它们之间的关系。刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以直线的附近,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性 回归 方程 求法 ppt 课件
限制150内