中值定理证明-9页文档资料.doc
《中值定理证明-9页文档资料.doc》由会员分享,可在线阅读,更多相关《中值定理证明-9页文档资料.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流中值定理证明【精品文档】第 8 页中值定理首先我们来看看几大定理:1、 介值定理:设函数f(x)在闭区间a,b上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点使得f()=C(ab).Ps:c是介于A、B之间的,结论中的取开区间。 介值定理的推论:设函数f(x)在闭区间a,b上连续,则f(x)在a,b上有最大值M,最小值m,若mCM,则必存在a,b, 使得f()=C。(闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值。此条推论运用较多)Ps:当题目中提到某个函数f(
2、x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。2、 零点定理:设函数f(x)在闭区间a,b上连续,且f(a)与f(b)异号,即f(a).f(b)0,那么在开区间内至少存在一点使得f()=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、 罗尔定理:如果函数f(x)满足:(1)、在闭区间a,b上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点(a
3、b),使得f(x)=0;4、 拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间a,b上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点(ab),使得f(b)-f(a)=f().(b-a).5、 柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间a,b上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(ax0)上具有二阶连续导数,f(0)=0 (1)、写出f(x)的带拉格朗日余项的一阶麦克劳林公式 (2)、证明在-a,a上至少存在一点使得第一问课本上记住了写出来就行,考的很基础(1)、(2)、第二问先将第一问的式子f(x)代入看看有什么结果出来,此处
4、不能直接拿到积分号外面,因为他不是与x无关的数。做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法。题目中说道f(x)有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用。所以有:因为f(x)有二阶连续导数,所以存在最大值和最小值,设为M,m则对于区间-a,a,所以由介值定理有结论成立。Ps:本题是以前的一道真题,具体哪年也记不得了,主要就是考到介值定理的运用。题目中说的很明白的,有二阶连续导数,往往当题目中提及到什么连续啊,特别是对于导函数连续的,我们总得注意下他有最大值,最小值,进而与介值定理联合运用。5、设f(x)在上连
5、续,且.证明:在内至少存在两个不同点本题看似很简洁,但做起来去不容易。结论是证明等式成立且为0,很容易让我们想到罗尔定理,我们如果能找到三个点处函数值相等,那么是不是就能有些思路了呢。令:,似乎只需在找出一点F(c)=0即可。,如果一切如我们所想,证明也就完成了。似乎已经找到这个点了。但是积分中值定理中,是取闭区间,如果要用的话得先构造函数用拉格朗日中值定理来证明其在开区间内成立。构造函数具体的证明步骤和上面涉及到的一样,自己去证。证完后就得到所以有:接下来的证明就和第一题中第二小问一样了,具体就不去证明了,自己证,关键掌握方法,思路。Ps:本题是02年左右的数一一道证明题,看看题目很简洁,但
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中值 定理 证明 文档 资料
限制150内