两角和与差的余弦公式教案-6页精选文档.doc
《两角和与差的余弦公式教案-6页精选文档.doc》由会员分享,可在线阅读,更多相关《两角和与差的余弦公式教案-6页精选文档.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流两角和与差的余弦公式教案【精品文档】第 6 页两角和与差的余弦公式教案执教教师: 陈 亮 时间:2010年1月13日 授课班级:高一(G)班 节次:第 2 节学科及册别:数学必修4 课本页码:9193章节:第三章第一节 课时安排:第一课时【教学三维目标】1.知识目标: 理解两角和与差的余弦公式的推导过程,熟记两角和与差的余弦公式,运用两角和与差的余弦公式,解决相关数学问题。2能力目标 : 培养学生严密而准确的数学表达能力;培养学生逆向思维和发散思维能力;培养学生的观察能力,逻辑推理能力和合作学习能力。3.情感目标: 通过观察、对比体会数学的对称美和谐美,
2、培养学生良好的数学表达和思考的能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度。 【高考等级要求】 C级【教学重点】 两角和与差的余弦公式的理解与灵活运用。【教学难点】 两角和与差的余弦公式的推导过程,特别是一般性的推广。【突破措施】 先由特殊情形引入再向一般性过渡,充分挖掘学生的思考和探究能力,以达到对公式的深入理解和灵活运用。【教材分析】 这节内容是教材必修4的第三章三角恒等变换第一节,是高考的重点考点,历年高考必考内容,一般在填空或解答题第15题出现。教材在学生掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数
3、表示的两角和与差的三角函数“两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出,均为锐角时成立对于,为任意角的情况,教材运用向量的知识进行了探究同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性。【学情分析】 本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。他们经过半个多学期的高中生活,储备了一定的数学知识,掌握了一些高中数学的学习方法,这为本节课的学习建立了良好的知识基础。 【学法设计】 独立思考,生生交流探究,小组合作【知识链
4、接】 诱导公式 平面向量的数量积一、 产生对公式的需求 引入新课 引入:我们曾经学过乘法对减法的分配律:,余弦也是一种运算,那么是否成立呢?对这个问题我们目前几乎没有办法直接证明,但我们可以用特殊值检验其成立的可能性故不恒成立那么到底等于什么呢?是否与角的三角函数有关呢?这便是我们这节课要研究的问题!(首先让学生通过具体实例消除对“cos(-)=cos-cos”的误解,说明两角和(差)的三角函数不能按分配律展开。并鼓励同学对公式结构的可能情况进行大胆猜想和尝试性探索。 ) 二、自主探究 引发思考 层层深入 得出结论 独立思考以下问题: (1)向量的数量积 则 (2)单位圆上的点的坐标表示 图(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 余弦 公式 教案 精选 文档
限制150内