二项式定理典型例题9页.doc
《二项式定理典型例题9页.doc》由会员分享,可在线阅读,更多相关《二项式定理典型例题9页.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流二项式定理典型例题【精品文档】第 9 页高考数学专题复习二项式定理练习题1. 在二项式的展开式中,前三项的系数成等差数列,求展开式中所有有理项分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决解:二项式的展开式的通项公式为:前三项的得系数为:,由已知:,通项公式为为有理项,故是4的倍数,依次得到有理项为说明:本题通过抓特定项满足的条件,利用通项公式求出了r的取值,得到了有理项类似地,的展开式中有多少项是有理项?可以通过抓通项中r的取值,得到共有系数和为2.(1)求展开式中的系数;(2)求展开式中的常数项分析:本题的两小题都不
2、是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式解:(1)展开式中的可以看成下列几种方式得到,然后合并同类项:用展开式中的常数项乘以展开式中的项,可以得到;用展开式中的一次项乘以展开式中的项可得到;用中的乘以展开式中的可得到;用 中的项乘以展开式中的项可得到,合并同类项得项为:(2)由展开式的通项公式,可得展开式的常数项为说明:问题(2)中将非二项式通过因式分解转化为二项式解决这时我们还可以通过合并项转化为二项式展开的问题来解决3. 求展开式中的系数分析:不是二项式,我们可以通过或把它看成二项式展开解:方法一:其中含的项为含项的
3、系数为6方法二:其中含的项为项的系数为6方法3:本题还可通过把看成6个相乘,每个因式各取一项相乘可得到乘积的一项,项可由下列几种可能得到5个因式中取x,一个取1得到3个因式中取x,一个取,两个取1得到1个因式中取x,两个取,三个取1得到合并同类项为,项的系数为64.求证:(1);(2)分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质解:(1)左边 右边(2)左边 右边说明:本题的两个小题都是通过变换转化成二项式系数之和,再用二项式系数的
4、性质求解此外,有些组合数的式子可以直接作为某个二项式的展开式,但这需要逆用二项式定理才能完成,所以需仔细观察,我们可以看下面的例子:求的结果仔细观察可以发现该组合数的式与的展开式接近,但要注意:从而可以得到:5.利用二项式定理证明:是64的倍数分析:64是8的平方,问题相当于证明是的倍数,为了使问题向二项式定理贴近,变形,将其展开后各项含有,与的倍数联系起来解:是64的倍数说明:利用本题的方法和技巧不仅可以用来证明整除问题,而且可以用此方程求一些复杂的指数式除以一个数的余数8.若将展开为多项式,经过合并同类项后它的项数为()A11B33C55D66分析:看作二项式展开解:我们把看成,按二项式展
5、开,共有“项”,即这时,由于“和”中各项的指数各不相同,因此再将各个二项式展开,不同的乘积()展开后,都不会出现同类项下面,再分别考虑每一个乘积()其中每一个乘积展开后的项数由决定,而且各项中和的指数都不相同,也不会出现同类项故原式展开后的总项数为,应选D9.若的展开式的常数项为,求分析:题中,当时,把三项式转化为;当时,同理然后写出通项,令含的幂指数为零,进而解出解:当时,其通项为令,得,展开式的常数项为;当时,同理可得,展开式的常数项为无论哪一种情况,常数项均为令,以,逐个代入,得10.的展开式的第3项小于第4项,则的取值范围是_分析:首先运用通项公式写出展开式的第3项和第4项,再根据题设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二项式 定理 典型 例题
限制150内