必修二 空间几何体 教师版.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《必修二 空间几何体 教师版.doc》由会员分享,可在线阅读,更多相关《必修二 空间几何体 教师版.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流必修二 空间几何体 教师版【精品文档】第 8 页必修二 空间几何体1、(2011、8)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为( D )2、(2012、7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B )(A)6 (B)9 (C)12 (D)18 第1题 第2题3、(2012、8)平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为( B ) (A) (B)4 (C)4 (D)64、(2013、11)某几何体的三视图如图所示,则该几何体的体积为( A )A168
2、B88C1616 D816解析:该几何体为一个半圆柱与一个长方体组成的一个组合体2248,V长方体42216.所以所求体积为168.故选A.5、(2013、15)1已知H是球O的直径AB上一点,AHHB12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_解析:如图,设球O的半径为R,则AH,OH.又EH2,EH1.在RtOEH中,R2,R2. S球4R2.6、(2014、8).如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( B )A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱7、(2015、11)圆柱被一个平面截去一部分后与半球(半径为r)组
3、成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20,则r=( B ) (A)1 (B) 2 (C) 4 (D) 8基础训练A组一、选择题1有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台 B.棱锥 C.棱柱 D.都不对 主视图 左视图 俯视图解:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2棱长都是的三棱锥的表面积为( )A. B. C. D. 解:因为四个面是全等的正三角形,则3长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( ) A B C D都不对解:长方体的对角线是球的直径,4正
4、方体的内切球和外接球的半径之比为( )A B C D解:正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是5在ABC中,,若使绕直线旋转一周,则所形成的几何体的体积是( )A. B. C. D. 解:6底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为,它的对角线的长分别是和,则这个棱柱的侧面积是( ) A B C D解:设底面边长是,底面的两条对角线分别为,而而即二、填空题1一个棱柱至少有 _个面,面数最少的一个棱锥有 _个顶点,顶点最少的一个棱台有 _条侧棱。解:符合条件的几何体分别是:三棱柱,三棱锥,三棱台2若三个球的表面积之比是,则它们的体积之比是_。解:3正方体 中,是上底
5、面中心,若正方体的棱长为,则三棱锥的体积为_。解:画出正方体,平面与对角线的交点是对角线的三等分点,三棱锥的高或:三棱锥也可以看成三棱锥,显然它的高为,等腰三角形为底面。4如图,分别为正方体的面、面的中心,则四边形在该正方体的面上的射影可能是_。解:平行四边形或线段5已知一个长方体共一顶点的三个面的面积分别是、,这个长方体的对角线长是_;若长方体的共顶点的三个侧面面积分别为,则它的体积为_.解:设则, 设则三、解答题1养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修二 空间几何体 教师版 必修 空间 几何体
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内