[压轴]高考数学复习导数大题精选10题_附详细解答共13页.doc
《[压轴]高考数学复习导数大题精选10题_附详细解答共13页.doc》由会员分享,可在线阅读,更多相关《[压轴]高考数学复习导数大题精选10题_附详细解答共13页.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流压轴高考数学复习导数大题精选10题_附详细解答【精品文档】第 13 页高考压轴导数大题例1.已知函数在区间,内各有一个极值点(I)求的最大值;(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式例3已知函数,其中为参数,且(1)当时,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;例4已知函数在点处取得极大值,其导函数的图象经过点,.求:()的值;()的值.例5设是函数的一个极值点.()求与的关系式(用表示),并求的单调区间;()设,.若存在使得成立,求的
2、取值范围例6已知函数在处取得极大值,在处取得极小值,且(1)证明;(2)若z=a+2b,求z的取值范围。 1. 已知函数,.()如果函数在上是单调增函数,求的取值范围;()是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由2. 如果是函数的一个极值,称点是函数的一个极值点.已知函数(1)若函数总存在有两个极值点,求所满足的关系;(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.3 已知函数.(1)若函数是其定义域上的增函数,求实数的取值范围;(2)若是奇
3、函数,且的极大值是,求函数在区间上的最大值;(3)证明:当时,.4已知实数a满足0a2,a1,设函数f (x)x3x2ax() 当a2时,求f (x)的极小值;() 若函数g(x)x3bx2(2b4)xln x (bR)的极小值点与f (x)的极小值点相同求证:g(x)的极大值小于等于5/4例1解(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且于是,且当,即,时等号成立故的最大值是16(II)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则不是的极值点而,且若,则和都是的极值点所以,即,又由,得,故解法二:
4、同解法一得因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在()当时,当时,;或当时,当时,设,则当时,当时,;或当时,当时,由知是的一个极值点,则,所以,又由,得,故例3解()当时,则在内是增函数,故无极值.(),令,得.由(),只需分下面两种情况讨论. 当时,随x的变化的符号及的变化情况如下表:x0+0-0+极大值极小值因此,函数在处取得极小值,且.要使,必有,可得.由于,故.当时,随x的变化,的符号及的变化情况如下表:+0-0+极大值极小值因此,函数处取得极小值,且若,则.矛盾.所以当时,的极小值不会大于零.综上,要使函数在内的极小值大于零,参数的取值范围为.例4解法一:()
5、由图像可知,在上,在上,在上,故在上递增,在上递减,因此在处取得极大值,所以由得解得解法二:()同解法一()设又所以由即得所以例5解()f (x)x2(a2)xba e3x,由f (3)=0,得 32(a2)3ba e330,即得b32a,则 f (x)x2(a2)x32aa e3xx2(a2)x33a e3x(x3)(xa+1)e3x.令f (x)0,得x13或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a3x1,则在区间(,3)上,f (x)0,f (x)为增函数;在区间(a1,)上,f (x)4时,x23x1,则在区间(,a1)上,f (x)0,f (x)为增函数;在区间(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压轴 高考 数学 复习 导数 精选 10 详细 解答 13
限制150内