初中数学规律题解题基本方共25页word资料.doc
《初中数学规律题解题基本方共25页word资料.doc》由会员分享,可在线阅读,更多相关《初中数学规律题解题基本方共25页word资料.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流初中数学规律题解题基本方【精品文档】第 25 页初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。例:4、10、16、22、28,求第n位数。分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)66n2(二)如
2、增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。举例说明:2、5、10、17,求第n位数。分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2(n-2)=2n-1,总增幅为:3+(2n-1)(n-1)2(n+1)(n-1)n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通
3、用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例如,观察下列各式数:0,3,8,15,24,。试按此规律写出的第100个数是 。解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
4、我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,。序列号: 1,2,3, 4, 5,。容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8. .答案与2的乘方有关 即:2n (四)有的可对每位数同时减去第
5、一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。例:2、5、10、17、26,同时减去2后得到新数列: 0、3、8、15、24,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。例 : 4,16,36,64,?,144,196, ?(第一百个数)同除以4后可得新数列:1、4、9、16,很显然是位置数的平方。(六)同技巧(四)、(五)一样,有的可对每位
6、数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、【典型例题】例1 观察下列算式:用你所发现的规律写出的末位数字是_。例2 观察下列式子: 请你将猜想得到的式子用
7、含正整数n的式子表示来_。五、图形找规律小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形填写下表:照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?注意引导学生概括“探索规律”的一般步骤: 寻找数量关系; 用代数式表示规律 验证规律。练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子一张桌子可坐6人,2
8、张桌子可坐 人。按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起2张桌子拼在一起可坐多少人?3张呢?n张呢?教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐 人。在中,改成每8张桌子拼成1张大桌子,则共可坐 人。活动三:探索图表的规律下面是2000年八月份的日历:日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?这个关系对任何一个月的日历都成立吗?为什么?你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。你还能提出那些问题?4 图34是一个三角形
9、,分别连接这个三角形三边的中点,得到图34;再分别连结图34中间的小三角形三边的中点,得到图34,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。(1)将下表填写完整图形编号12345三角形个数159(2)在第n个图形中有_个三角形(用含n的式子表示)。例6如图,把一个面积为1的正方形分等分成两个面积为的矩形,接着把面积为的矩形等分成两个面积为的正方形,再把面积为的矩形等分成两个面积为的矩形,如此进行下去,试利用图形提示的规律计算:例7把棱长为的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个按这种规律摆放,第五层的正方体的个数是 例8.观察下列图形并填表。112个数
10、1234567周长581114六、巩固练习题1用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案:(1)第4个图案中有白色地面砖 块;(2)第个图案中有白色地面砖 块。第三个第二个第一个2下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有个棋子,每个图案棋子总数为S,按下图的排列规律推断,S与之间的关系可以用式子 来表示。3观察与分析下面各列数的排列规律,然后填空。5,9,13,17, , 。4,5,7,11,19, , 。10,20,21,42,43, , ,174,175。4,9,19,34,54, , ,144。45,1,43,3,41,5, , ,3
11、7,9。6,1,8,3,10,5,12,7, , 。0,1,1,2,3,5, , 。180,155,131,108, , 。5,15,45,135, , 。60,63,68,75, , 。4你能很快算出吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10+5,即求的值(为自然数),你试分析这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。(1) 通过计算,控索规律:可写成可写成可写成可写成可写成 可写成 (2) 从第(1)的结果,归纳、推测得: (3) 根据上面的归纳、推测,请算出: 5观察下列几个算式,找出规律:12
12、1=412321=91234321=16123454321=25利用上面规律,请你迅速算出:1239910099321= 据你会算出123100是多少吗?据上你能推导出123的计算公式吗?12给出下列算式:,观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律是 。6研究下列算式,你会发现有什么规律?请将你找出的规律用公式表示出来: 。7如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律填写:所表示的数: 。 所表示的数: 。8因为,那么 。9将1,按一定规律排成下表:试找出在第 行第 个数10如下图:9(1)2531364346617212274524
13、285(2)11把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。如果在表的另外的地方,也用正方形围住另外的9个数。(1) 当正方形左上角的数是100时,这9个数的和是多少?(2) 当正方形中9个数的和是1557时,最大的数是多少?12将1至1001个数如下图的格式排列。用一个长方形框入12个数,要使这12个数的和等于(1)1986;(2)2529;(3)1989是否办得到?如果办不到,简单说明理由:如果办得到,写出长方形框里的最大的数和最小的数。13(2010年山东省青岛市)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚
14、棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n个图案需要 枚棋子第13题图【关键词】规律14、(2010盐城)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是02842462246844m6A38 B52 C66 D74关键词:数字排列规律 第12题15(2010年门头沟区)如图,过上到点的距离分别为 的点作的垂线与相交,得到并标出一组黑色梯形,它们的面积分别为则第一个黑色梯形的面积 ;观察图中的规律,第n(n为正整数)个黑色梯形的面积 【关键词】规律题、梯形面积CAFDEBG16.(2010年山东省济南市)如图所示,两个全等菱形的
15、边长为1厘米,一只蚂蚁由点开始按的顺序沿菱形的边循环运动,行走2010厘米后停下,则这只蚂蚁停在 点【关键词】点的移动17、(2010年毕节地区)搭建如图的单顶帐篷需要17根钢管,这样的帐篷按图,图的方式串起来搭建,则串7顶这样的帐篷需要 根钢管 【关键词】找规律18、(2010年宁波市)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式。请你观察下列几种简单多面体模型,解答下列问题:正十二面体正八面体长方体四面体(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体47长方体8612正八面体
16、812正十二面体201230你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_。(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_。(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为个,八边形的个数为个,求的值。【关键词】规律与探索19、15直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.【关键词】点20、 (2010年安徽中考)下面两个多位数1248624、6248624,都是按照如下方法得到的:将第
17、一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。对第2位数字再进行如上操作得到第3位数字,后面的每一位数字都是由前一位数字进行如上操作得到的。当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )A)495 B)497 C)501 D)503【关键词】探索规律21、(2010年浙江省东阳市)阅读材料,寻找共同存在的规律:有一个运算程序ab = n,可以使:(a+c)b= n+c,a(b+c)=n2c,如果11=2,那么20102010 = 【关键词】阅读理解、探究规律22、(2010重庆市)有两个完全重合的矩形,将其
18、中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45,第1次旋转后得到图,第2次旋转后得到图,则第10次旋转后得到的图形与图中相同的是()A图 B图 C图 D图解析:观察图形,可知每转动4次为一个循环,所以104=22,即第10次旋转后得到图形是图.24.(2010年四川省眉山市)如图,将第一个图(图)所示的正三角形连结各边中点进行分割,得到第二个图(图);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图);再将第三个图中最中间的小正三角形按同样的方式进行分割,则得到的第五个图中,共有_个正三角形【关键词】规律与探索25(2010年福建省晋江市
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 规律 题解 基本 25 word 资料
限制150内