人工智能复习题.doc
《人工智能复习题.doc》由会员分享,可在线阅读,更多相关《人工智能复习题.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流人工智能复习题【精品文档】第 12 页1 判断下列公式是否为可合一,若可合一,则求出其最一般合一。(1) P(a, b), P(x, y)(2) P(f(x), b), P(y, z)(3) P(f(x), y), P(y, f(b)(4) P(f(y), y, x), P(x, f(a), f(b)解:(1) 可合一,其最一般和一为:=a/x, b/y。(2) 可合一,其最一般和一为:=y/f(x), b/z。(3) 可合一,其最一般和一为:= f(b)/y, b/x。(4) 不可合一。2 把下列谓词公式化成子句集:(1) (x)(y)(P(x, y)
2、Q(x, y)(2) (x)(y)(P(x, y)Q(x, y)(3) (x)(y)(P(x, y)(Q(x, y)R(x, y)(4) (x) (y) (z)(P(x, y)Q(x, y)R(x, z) 解:(1) 由于(x)(y)(P(x, y)Q(x, y)已经是Skolem标准型,且P(x, y)Q(x, y)已经是合取范式,所以可直接消去全称量词、合取词,得 P(x, y), Q(x, y) 再进行变元换名得子句集: S= P(x, y), Q(u, v) (2) 对谓词公式(x)(y)(P(x, y)Q(x, y),先消去连接词“”得:(x)(y)(P(x, y)Q(x, y)此公
3、式已为Skolem标准型。 再消去全称量词得子句集: S=P(x, y)Q(x, y) (3) 对谓词公式(x)(y)(P(x, y)(Q(x, y)R(x, y),先消去连接词“”得:(x)(y)(P(x, y)(Q(x, y)R(x, y)此公式已为前束范式。再消去存在量词,即用Skolem函数f(x)替换y得:(x)(P(x, f(x)Q(x, f(x)R(x, f(x)此公式已为Skolem标准型。最后消去全称量词得子句集: S=P(x, f(x)Q(x, f(x)R(x, f(x) (4) 对谓词(x) (y) (z)(P(x, y)Q(x, y)R(x, z),先消去连接词“”得:
4、(x) (y) (z)(P(x, y)Q(x, y)R(x, z)再消去存在量词,即用Skolem函数f(x)替换y得:(x) (y) (P(x, y)Q(x, y)R(x, f(x,y)此公式已为Skolem标准型。 最后消去全称量词得子句集:S=P(x, y)Q(x, y)R(x, f(x,y) 3 对下列各题分别证明G是否为F1,F2,Fn的逻辑结论:(1) F: (x)(y)(P(x, y) G: (y)(x)(P(x, y)(2) F: (x)(P(x)(Q(a)Q(b) G: (x) (P(x)Q(x)(3) F: (x)(y)(P(f(x)(Q(f(y) G: P(f(a)P(y
5、)Q(y)(4) F1: (x)(P(x)(y)(Q(y)L(x.y) F2: (x) (P(x)(y)(R(y)L(x.y)G: (x)(R(x)Q(x)(5) F1: (x)(P(x)(Q(x)R(x) F2: (x) (P(x)S(x) G: (x) (S(x)R(x) 解:(1) 先将F和G化成子句集: S=P(a,b), P(x,b) 再对S进行归结P(x,b)P(a,b)NIL a/x 所以,G是F的逻辑结论(2) 先将F和G化成子句集由F得:S1=P(x),(Q(a)Q(b)由于G为: (x) (P(x)Q(x),即 (x) ( P(x) Q(x),可得: S2= P(x) Q(
6、x)因此,扩充的子句集为:S= P(x),(Q(a)Q(b), P(x) Q(x)再对S进行归结:Q(a)Q(b)Q(a) P(x) Q(x) P(a)P(x)NILQ(a)Q(b) a/b P(x) Q(x)Q(a)a/x P(a)P(x) a/xNIL 所以,G是F的逻辑结论 同理可求得(3)、(4)和(5),其求解过程略。 5如果x是y的父亲,y是z的父亲,则x是z的祖父; 2每个人都有一个父亲。使用归结演绎推理证明:对于某人u,一定存在一个人v,v是u的祖父。 解:先定义谓词 F(x,y):x是y的父亲 GF(x,z):x是z的祖父 P(x):x是一个人 再用谓词把问题描述出来: 已知
7、F1:(x) (y) (z)( F(x,y)F(y,z)GF(x,z) F2:(y)(P(x)F(x,y) 求证结论G:(u) (v)( P(u)GF(v,u) 然后再将F1,F2和G化成子句集: F(x,y)F(y,z)GF(x,z) P(r)F(s,r) P(u) GF(v,u) 对上述扩充的子句集,其归结推理过程如下:F(x,y)F(y,z)GF(x,z)GF(v,u)F(x,y)F(y,z)P(r)F(s,r)F(y,z)P(y)P(r)F(s,r)P(y)P(z)P(y)P(u)NIL x/v,z/ux/s,y/ry/s,z/r y/z y/u 由于导出了空子句,故结论得证。6 假设
8、张被盗,公安局派出5个人去调查。案情分析时,贞察员A说:“赵与钱中至少有一个人作案”,贞察员B说:“钱与孙中至少有一个人作案”,贞察员C说:“孙与李中至少有一个人作案”,贞察员D说:“赵与孙中至少有一个人与此案无关”,贞察员E说:“钱与李中至少有一个人与此案无关”。如果这5个侦察员的话都是可信的,使用归结演绎推理求出谁是盗窃犯。解:(1) 先定义谓词和常量设C(x)表示x作案,Z表示赵,Q表示钱,S表示孙,L表示李(2) 将已知事实用谓词公式表示出来赵与钱中至少有一个人作案:C(Z)C(Q)钱与孙中至少有一个人作案:C(Q)C(S)孙与李中至少有一个人作案:C(S)C(L)赵与孙中至少有一个人
9、与此案无关: (C (Z)C(S),即 C (Z) C(S)钱与李中至少有一个人与此案无关: (C (Q)C(L),即 C (Q) C(L)(3) 将所要求的问题用谓词公式表示出来,并与其否定取析取。设作案者为u,则要求的结论是C(u)。将其与其否)取析取,得: C(u) C(u)(4) 对上述扩充的子句集,按归结原理进行归结,其修改的证明树如下:C(Z)C(Q)C (Z) C(S)C(Q)C(S)C(Q)C(S)C(Q)C(u)C(u)C(Q) Q/u 因此,钱是盗窃犯。实际上,本案的盗窃犯不止一人。根据归结原理还可以得出:C(S)C(L)C (Q) C(L)C(S)C(Q)C(Q)C(S)
10、C(S)C(u)C(u)C(S)C (Q) C(L)C(S)C(L)C(Q)C(S)C(S)C(Q)C(u)C(u)C(S) S/u C(S) 因此,孙也是盗窃犯。7 设有子句集: P(x)Q(a, b), P(a)Q(a, b), Q(a, f(a), P(x)Q(x, b)分别用各种归结策略求出其归结式。解:支持集策略不可用,原因是没有指明哪个子句是由目标公式的否定化简来的。删除策略不可用,原因是子句集中没有没有重言式和具有包孕关系的子句。单文字子句策略的归结过程如下:Q(a, f(a)P(x)Q(a, b) b/f(a)P(x)Q(x, b)P(a)Q(a, f(a)Q(a, b) a/
11、x b/f(a)Q(a, b)用线性输入策略(同时满足祖先过滤策略)的归结过程如下:P(a)Q(a, b)P(x)Q(a, b)P(x)Q(x, b)P(a) a/xa/xQ(a, f(a)Q(a,b) b/f(a)NIL 8 设已知:(1) 能阅读的人是识字的;2海豚不识字;3有些海豚是很聪明的。请用归结演绎推理证明:有些很聪明的人并不识字。解:第一步,先定义谓词, 设R(x)表示x是能阅读的;K(y)表示y是识字的;W(z) 表示z是很聪明的;第二步,将已知事实和目标用谓词公式表示出来能阅读的人是识字的:(x)(R(x)K(x)海豚不识字:(y)(K (y)有些海豚是很聪明的:(z) W(
12、z)有些很聪明的人并不识字:(x)( W(z)K(x) 第三步,将上述已知事实和目标的否定化成子句集: R(x)K(x) K (y) W(z) W(z)K(x) 第四步,用归结演绎推理进行证明W(z)W(z)K(x)W(z)K(z)NIL9 对子句集: PQ, QR, RW, RP, WQ, QR 用线性输入策略是否可证明该子句集的不可满足性? 解:用线性输入策略不能证明子句集 PQ, QR, RW, RP, WQ, QR 的不可满足性。原因是按线性输入策略,不存在从该子句集到空子句地归结过程。10 设有如下一段知识:“张、王和李都属于高山协会。该协会的每个成员不是滑雪运动员,就是登山运动员,
13、其中不喜欢雨的运动员是登山运动员,不喜欢雪的运动员不是滑雪运动员。王不喜欢张所喜欢的一切东西,而喜欢张所不喜欢的一切东西。张喜欢雨和雪。”试用谓词公式集合表示这段知识,这些谓词公式要适合一个逆向的基于规则的演绎系统。试说明这样一个系统怎样才能回答问题:“高山俱乐部中有没有一个成员,他是一个登山运动员,但不是一个滑雪运动员?”解:(1) 先定义谓词A(x) 表示x是高山协会会员S(x) 表示x是滑雪运动员C(x) 表示x是登山运动员L(x,y) 表示x 喜欢y (2) 将问题用谓词表示出来“张、王和李都属于高山协会 A(Zhang)A(Wang)A(Li)高山协会的每个成员不是滑雪运动员,就是登
14、山运动员 (x)(A(x)S(x)C(x)高山协会中不喜欢雨的运动员是登山运动员 (x)(L(x, Rain)C(x)高山协会中不喜欢雪的运动员不是滑雪运动员 (x)(L(x, Snow) S(x)王不喜欢张所喜欢的一切东西 (y)( L(Zhang, y) L(Wang ,y) 王喜欢张所不喜欢的一切东西 (y)( L(Zhang, y)L(Wang, y)张喜欢雨和雪 L(Zhang , Rain)L(Zhang , Snow)(3) 将问题要求的答案用谓词表示出来高山俱乐部中有没有一个成员,他是一个登山运动员,但不是一个滑雪运动员? (x)( A(x)C(x) S(x) (4) 为了进行
15、推理,把问题划分为已知事实和规则两大部分。假设,划分如下:已知事实:A(Zhang)A(Wang)A(Li)L(Zhang , Rain)L(Zhang , Snow)规则:(x)(A(x)S(x)C(x)(x)(L(x, Rain)C(x)(x)(L(x, Snow) S(x)(y)( L(Zhang, y) L(Wang ,y)(y)( L(Zhang, y)L(Wang, y) (5) 把已知事实、规则和目标化成推理所需要的形式事实已经是文字的合取形式:f1: A(Zhang)A(Wang)A(Li)f2: L (Zhang , Rain)L(Zhang , Snow)将规则转化为后件为
16、单文字的形式:r1: A(x)S(x)C(x)r2: L(x, Rain)C(x)r3: L(x, Snow) S(x)r4: L(Zhang, y) L(Wang ,y)r5: L(Zhang, y)L(Wang , y) 将目标公式转换为与/或形式 A(x)(C(x) S(x) (6) 进行逆向推理逆向推理的关键是要能够推出L(Zhang , Rain)L(Zhang , Snow),其逆向演绎过程如下图所示。 A(x)(C(x) S(x)C(x) S(x) A(x)C(x) S(x)r2r34L(x, Rain)L(x, Snow)Wang/x, y/RainWang /x, y/Sno
17、wL(Wang, y)L(Wang, y)r4r4L(Zhang, y)L(Zhang, y)Rain/ySnow/yL(Zhang, Snow)L(Zhang, Rain)1. 智能 智能是一种认识客观事物和运用知识解决问题的综合能力。1. 什么叫知识? 知识是人们在改造客观世界的实践中积累起来的认识和经验2. 确定性推理 指推理所使用的知识和推出的结论都是可以精确表示的,其真值要么为真、要么为假。3. 推理 推理是指按照某种策略从已知事实出发利用知识推出所需结论的过程。4. 不确定性推理 指推理所使用的知识和推出的结论可以是不确定的。所谓不确定性是对非精确性、模糊型和非完备性的统称。5.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 复习题
限制150内