弹性力学课件ppt.ppt
《弹性力学课件ppt.ppt》由会员分享,可在线阅读,更多相关《弹性力学课件ppt.ppt(164页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一节第一节 平面应力问题和平面应变问题平面应力问题和平面应变问题第二节第二节 平衡微分方程平衡微分方程第三节第三节 平面问题中一点的应力状态平面问题中一点的应力状态第四节第四节 几何方程几何方程 刚体位移刚体位移第五节第五节 物理方程物理方程第六节第六节 边界条件边界条件第二章 平面应力问题和平面应变问题第七节第七节 圣维南原理及其应用圣维南原理及其应用第八节第八节 按位移求解平面问题按位移求解平面问题第九节第九节 按应力求解平面问题按应力求解平面问题 相容方程相容方程第十节第十节 常应力情况下的简化常应力情况下的简化 应力函数应力函数第二章 平面应力问题和平面应变问题 弹性力学平面问题共有
2、应力、应变和弹性力学平面问题共有应力、应变和位移位移8 8个未知函数,且均为个未知函数,且均为 。2-12-1平面应力问题和平面应变问题平面应力问题和平面应变问题 弹性力学空间问题共有应力、应变和弹性力学空间问题共有应力、应变和位移位移1515个未知函数,且均为个未知函数,且均为 ;zyxf,yxf,平面应力第二章 平面应力问题和平面应变问题 (4 4)约束约束作用于板边,平行于板的中面,作用于板边,平行于板的中面,沿板厚不变。沿板厚不变。 (3 3)面力面力作用于板边,平行于板的中面,作用于板边,平行于板的中面,沿板厚不变;沿板厚不变; (2 2)体力体力作用于体内,平行于板的中面,作用于体
3、内,平行于板的中面,沿板厚不变;沿板厚不变;条件是:条件是: 第一种:平面应力问题第一种:平面应力问题 平面应力 (1 1)等厚度的)等厚度的薄板薄板;第二章 平面应力问题和平面应变问题 坐标系如图选择。平面应力第二章 平面应力问题和平面应变问题简化为平面应力问题:简化为平面应力问题: 故只有平面应力故只有平面应力 存在。存在。0,2zzyzxz(在V中) , 0,zyzxz 由于薄板很薄,应力是连续变化的,由于薄板很薄,应力是连续变化的,又无又无z向外力,可认为:向外力,可认为:平面应力(1 1)两板面上无面力和约束作用,故)两板面上无面力和约束作用,故xyyx, ,第二章 平面应力问题和平
4、面应变问题 所以归纳为平面应力问题:所以归纳为平面应力问题:a.a.应力中只有平面应力应力中只有平面应力 存在;存在;b.b.且仅为且仅为 。yxf,平面应力xyyx, ,(2 2)由于板为等厚度,外力、约束沿)由于板为等厚度,外力、约束沿z z向向不变,故应力不变,故应力 仅为仅为 。yxf,xyyx, ,第二章 平面应力问题和平面应变问题如:弧形闸门闸墩计算简图:平面应力深梁计算简图:Fyfyf第二章 平面应力问题和平面应变问题因表面无任何面力,因表面无任何面力,0,0yxff 即:. 0,zyzxz平面应力. 0,zyzxzAB例题例题1 1:试分析:试分析ABAB薄层中的应力状态。薄层
5、中的应力状态。故接近平面应力问题。故接近平面应力问题。故表面上,有:故表面上,有:在近表面很薄一层内:在近表面很薄一层内:第二章 平面应力问题和平面应变问题 (2 2)体力体力作用于体内,平行于横截面,沿柱体作用于体内,平行于横截面,沿柱体长度方向不变;长度方向不变;平面应变第二种:平面应变问题第二种:平面应变问题条件是:条件是: (1 1)很长的)很长的常截面柱体常截面柱体; (3 3)面力面力作用于柱面,平行于横截面,沿柱作用于柱面,平行于横截面,沿柱体长度方向不变;体长度方向不变; (4 4)约束约束作用于柱面,平行于横截面,沿柱作用于柱面,平行于横截面,沿柱体长度方向不变。体长度方向不
6、变。第二章 平面应力问题和平面应变问题坐标系选择如图:平面应变oxzyozxy对称面zy第二章 平面应力问题和平面应变问题 故任何故任何z z 面(截面)均为对称面。面(截面)均为对称面。(平面位移问题)只有 ; , 0u,vw(平面应变问题)只有 ., , 0,0, 00 xyyxzyzxzyzxzw 平面应变(1 1)截面、外力、约束沿)截面、外力、约束沿z z 向不变,外力、约束向不变,外力、约束 平行平行xyxy面,柱体非常长;面,柱体非常长;简化为平面应变问题:简化为平面应变问题:第二章 平面应力问题和平面应变问题(2 2)由于截面形状、体力、面力及约束沿)由于截面形状、体力、面力及
7、约束沿 向均不变,故应力、应变和位移均为向均不变,故应力、应变和位移均为 。yxf,z平面应变第二章 平面应力问题和平面应变问题 所以归纳为平面应变问题:所以归纳为平面应变问题: a.a.应变中只有平面应变分量应变中只有平面应变分量 存在;存在; b.b.且仅为且仅为 。平面应变yxf,xyyx,第二章 平面应力问题和平面应变问题例如:平面应变隧道挡土墙oyxyox第二章 平面应力问题和平面应变问题且仅为且仅为 。故只有故只有 ,本题中:本题中:0, 0zyzxz平面应变yxf,xyyx,oxyz例题例题2 2:试分析薄板中的应变状态。:试分析薄板中的应变状态。故为平面应变问题。故为平面应变问
8、题。. 0,zyzx第二章 平面应力问题和平面应变问题2 22 2平衡微分方程平衡微分方程定义 平衡微分方程平衡微分方程-表示物体内任一点的微分体的平衡条件。第二章 平面应力问题和平面应变问题 在任一点(x,y)取出一微小的平行六面体 ,作用于微分体上的力:体力:体力: 。1dd yxyxff ,定义应力:作用于各边上,应力:作用于各边上, 并表示出正面上并表示出正面上 由坐标增量引起由坐标增量引起 的的应力增量应力增量。第二章 平面应力问题和平面应变问题应用的基本假定应用的基本假定:连续性假定应力用连续函数来表示。小变形假定用变形前的尺寸代替变 形后的尺寸。 第二章 平面应力问题和平面应变问
9、题列出平衡条件列出平衡条件:合力 = 应力面积,体力体积; 以正向物理量来表示。平面问题中可列出3个平衡条件。平衡条件平衡条件第二章 平面应力问题和平面应变问题其中一阶微量抵消,并除以 得: . 01dd1d1)dd(1d1)dd(, 0yxfxxyyyyxxFxyxyxyxxxxxyxdd0.(a)yxxxfxy0yF0.(b)yxyyfyx,同理可得:平衡条件平衡条件第二章 平面应力问题和平面应变问题 , 0cM 当 时,得切应力互等定理,得,d21d21yyxxyxyxxyxy0d,dyx.(c)xyyx平衡条件平衡条件第二章 平面应力问题和平面应变问题 适用的条件-连续性,小变形;xy
10、说明说明对平衡微分方程的说明:对平衡微分方程的说明: 代表A中所有点的平衡条件, 因位( ,)A; 应力不能直接求出; 对两类平面问题的方程相同。第二章 平面应力问题和平面应变问题理论力学考虑整体 的平衡(只决定整体的运动状态)。 VVVd说明说明比较:材料力学考虑有限体 的平衡(近似)。 弹性力学考虑微分体 的平衡(精确)。第二章 平面应力问题和平面应变问题 当 均平衡时,保证 , 平衡;反之则不然。 VV说明说明Vd 所以弹力的平衡条件是严格的,并且是精确的。 第二章 平面应力问题和平面应变问题理力( V )材力( )弹力( )bxhVd1dddyxVhV dxdy dx第二章 平面应力问
11、题和平面应变问题思考题思考题1.试检查,同一方程中的各项,其量纲 必然相同(可用来检验方程的正确性)。2.将条件 ,改为对某一角点的 ,将得出什么结果?3.微分体边上的应力若考虑为不均匀分布, 将得出什么结果?0cM0M第二章 平面应力问题和平面应变问题 已知坐标面上应力 , 求斜面上的应力。问题的提出:2 23 3平面问题中一点的应力状态平面问题中一点的应力状态问题问题xyyx, ,第二章 平面应力问题和平面应变问题求解:取出一个三角形微分体(包含 面, 面, 面), 边长).,(),(nnyxppppn.,mdsPAldsPBdsAB问题问题xy斜面应力表示:斜面应力表示:第二章 平面应力
12、问题和平面应变问题由平衡条件,并略去高阶分量体力项,得(1)求求( , , )(a a)xpyp,xyyyyxxxlmpmlp斜面应力斜面应力其中:其中:l=cos(n,x), m=cos(n,y)。第二章 平面应力问题和平面应变问题(2)求求( )将 向法向,切向投影,得nn ,),(yxppp 22222, (b)()().nxyxyxynyxyxxylpmpl m lmlpmplm lm斜面应力斜面应力第二章 平面应力问题和平面应变问题 设某一斜面为主面,则只有由此建立方程,求出:, 0,nn(3)求主应力求主应力斜面应力斜面应力. tan,222112221xyxyyxyx(c c)第
13、二章 平面应力问题和平面应变问题将x,y放在 方向,列出任一斜面上应力公式,可以得出(设 )21, 21 . 45 ,2,2121的斜面上应力成发生在与主nmaxminnmaxmin(4)求最大,最小应力求最大,最小应力最大,最小应力最大,最小应力说明:以上均应用弹力符号规定导出。(d)第二章 平面应力问题和平面应变问题几何方程几何方程表示任一点的微分线段 上形变与位移之间的关系。2 24 4几何方程刚体位移几何方程刚体位移定义定义第二章 平面应力问题和平面应变问题变形前位置: 变形后位置: 各点的位置如图。 通过点P(x,y)作两正坐标向的正坐标向的微分线段, ,dyPBdxPA, , ,P
14、 A B定义定义,P A B第二章 平面应力问题和平面应变问题32sin,3!cos11,2!tan. 应用基本假定:连续性;小变形。当很小时,假定假定第二章 平面应力问题和平面应变问题().xuudxuuxdxx.yvy假定假定由位移求形变:PA 线应变PA 转角PB 线应变PB 转角同理,tan.vdxvxdxxyu第二章 平面应力问题和平面应变问题 适用于区域内任何点,因为(x,y) A;对几何方程的说明:. , ,yuxvyvxuxyyx所以平面问题的几何方程平面问题的几何方程为:说明说明 适用条件:a.连续性;b.小变形。 应用小变形假定,略去了高阶小量 线性的几何方程;第二章 平面
15、应力问题和平面应变问题 几何方程是变形后物体连续性条件 的反映和必然结果。 形变和位移之间的关系: 位移确定位移确定 形变完全确定:形变完全确定: 从物理概念看,各点的位置确定,则微分线段上的形变确定 。 说明说明 从数学推导看,位移函数确定,则其导数(形变)确定 。第二章 平面应力问题和平面应变问题 从物理概念看, , 确定,物体还可作刚体位移。 从数学推导看, , 确定,求位移是积分运算,出现待定函数。形变确定,位移不完全确定形变确定,位移不完全确定: 形变与位移的关系形变与位移的关系第二章 平面应力问题和平面应变问题由 ,两边对y积分,由 ,两边对x积分,例:若例:若 , ,求位移:求位
16、移:0 xyyx0,(a)xyvuxy形变与位移的关系形变与位移的关系0 xxu0yyv).(0),(1yfyxu).(0),(2xfyxv代入第三式第二章 平面应力问题和平面应变问题分开变量, 12d ( )d ( ) ( ).(b)ddfyfxyx 因为几何方程第三式对任意的(x,y)均应满足。当x(y)变化时,式(b)的左,右均应=常数 ,由此解出 。可得形变与位移的关系形变与位移的关系21, ff , . (c)oouuyvvx 第二章 平面应力问题和平面应变问题物理意义:00,vu形变与位移的关系形变与位移的关系表示物体绕原点的刚体转动。表示x,y向的刚体平移,第二章 平面应力问题和
17、平面应变问题结论结论 形变确定,则与形变有关的位移可以形变确定,则与形变有关的位移可以确定,而与形变无关的刚体位移确定,而与形变无关的刚体位移则未定。则未定。须通过边界上的约束条件来确定 。,oovu,oovu第二章 平面应力问题和平面应变问题思考题思考题,cbaxyyx当应变为常量时, 试求出对应的位移分量。第二章 平面应力问题和平面应变问题物理方程表示(微分体上)应力和形变 之间的物理关系。11(), ,11(), ,11(), .xxyzyzyzyyzxzxzxzzxyxyxyEGEGEG定义即为广义胡克定律:2 25 5物理方程物理方程第二章 平面应力问题和平面应变问题物理方程的说明物
18、理方程的说明:说明说明 正应力只与线应变有关;切应力只与切 应变有关。 是线性的代数方程; 是总结实验规律得出的; 适用条件理想弹性体;第二章 平面应力问题和平面应变问题 物理方程的两种形式:物理方程的两种形式: 应变用应力表示,用于 按应力求解; 应力用应变(再用位移表示) 表示,用于按位移求解。)(f )(f说明说明第二章 平面应力问题和平面应变问题平面应力问题的物理方程:平面应力问题的物理方程: 代入 ,得:在z方向0zyzxz11(), (),(a)2(1).xxyyyxxyxyEEE).( , 0yxzzE平面应力第二章 平面应力问题和平面应变问题 代入 得, 0zyzxz221()
19、,11(),(b)12(1).xxyyyxxyxyEEE平面应变问题的物理方程平面应变问题的物理方程平面应变在z方向,).(,0yxzz第二章 平面应力问题和平面应变问题平面应力物理方程平面应变物理方程:.1 ,12EE变换关系变换关系:.1 ,)1()21(2EE平面应变物理方程平面应力物理方程:第二章 平面应力问题和平面应变问题思考题 1.试证:由主应力可以求出主应变,且两者方向一致。 2.试证:3个主应力均为压应力,有时可以产生拉裂现象。 3.试证:在自重作用下,圆环(平面应力问题)比圆筒(平面应变问题)的变形大。第二章 平面应力问题和平面应变问题 位移边界条件位移边界条件 设在 部分边
20、界上给定位移分量 和 ,则有),()( ),()(svvsuuss(在 上)。(a)usus定义)(su)( sv 边界条件边界条件 表示在边界上位移与约束,或应力与面力之间的关系。位移边界条件26边界条件第二章 平面应力问题和平面应变问题 若为简单的固定边, 则有位移边界条件的说明:sus, 0 vu, 0)( , 0)(ssvuus(在 上)。(b) 它是在边界上物体保持连续性的条 件,或位移保持连续性的条件。 它是函数方程,要求在 上每一点 , 位移与对应的约束位移相等。第二章 平面应力问题和平面应变问题在23 中,通过三角形微分体的平衡条件,导出坐标面应力与斜面应力的关系式,应力边界条
21、件应力边界条件设在 上给定了面力分 量 , ,xyyyyxxxlmpmlp).( ),(sfsfyxs(在A中)。(c)应力边界条件第二章 平面应力问题和平面应变问题将此三角形移到边界上,并使斜面与边界面重合,则得应力边界条件:()( ), . (d)()( ),xyxsxyxysylmfssmlfs(在 上)第二章 平面应力问题和平面应变问题 它是边界上微分体的静力平衡条件;说明应力边界条件的说明: 式(c)在A中每一点均成立,而 式(d)只能在边界 s上成立; 它是函数方程,要求在边界上每一点s 上均满足,这是精确的条件;第二章 平面应力问题和平面应变问题 所有边界均应满足,无面力的边界
22、(自由边) 也必须满足。 式(d)中, 按应力符号规定, , 按面力符号规定;yfxf 位移,应力边界条件均为每个边界两 个,分别表示 , 向的条件;, 0yxffxy说明xyyx, ,第二章 平面应力问题和平面应变问题若x=a为正x 面,l = 1, m = 0, 则式(d)成为( ), (). (e)x ax x axxyyff当边界面为坐标面时当边界面为坐标面时,坐标面yxbaxfyfxxfyfxyxxy第二章 平面应力问题和平面应变问题若x=-b为负x 面,l = -1, m = 0 , 则式(d)成为( ), (). (f)xbx xbxxyyffyxbaxfyfxxfyfxyxxy
23、第二章 平面应力问题和平面应变问题应力边界条件的两种表达式:应力边界条件的两种表达式:两种表达式 在同一边界面上,应力分量应等于对 应的面力分量(数值相等,方向一 致)。即在同一边界面上,应力数值应 等于面力数值(给定),应力方向应同面 力方向(给定)。 在边界点取出微分体,考虑其平衡条 件,得式(d)或(e),(f );第二章 平面应力问题和平面应变问题 在斜面上, 在坐标面上,由于应力与面力的符号规定不同,故式(e),(f )有区别。例如:.)( ,)(yyxsxfpfps两种表达式第二章 平面应力问题和平面应变问题lh/2h/2qyxoyyxxyyyxx例1 列出边界条件:1q第二章 平
24、面应力问题和平面应变问题0( )0 ( )0.x 0 x 0 x,u,v边界()0, ()0.xx lxyx lxl,边界() ()0.yhyxhyy22xhy,q,2l边界1()0, ().yhyxhyy22hy,q2边界第二章 平面应力问题和平面应变问题yxoqqqqbbaa例2 列出边界条件:xyyyxx第二章 平面应力问题和平面应变问题显然,边界条件要求在 上, 也成抛物线分布。b()0, ()0.yyyxybyb 边界:axx2()( ) , ()0.xxaxyxaxayqb 边界:第二章 平面应力问题和平面应变问题 部分边界上为位移边界条件,另一部分边界上为应力边界条件;混合边界条
25、件混合边界条件:混合边界条件: 同一边界上,一个为位移边界条件,另一个为应力边界条件。第二章 平面应力问题和平面应变问题例3 列出 的边界条件:ax .0)(, 0)(,axxyaxuaxyxoa第二章 平面应力问题和平面应变问题思考题 oxy(c)(a)(d)(b)qxnyABAxyoAMygn第二章 平面应力问题和平面应变问题1.若在斜边界面上,受有常量的法向分布 压力 作用,试列出应力边界条件, (思考题图中(a))。2.证明在无面力作用的0A边上, 不等 于零(思考题图中(b))。3.证明在凸角A点附近,当无面力作用 时,其应力为零(思考题图中 (c))。qy第二章 平面应力问题和平面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学 课件 ppt
限制150内