《运筹学指派问题ppt课件.ppt》由会员分享,可在线阅读,更多相关《运筹学指派问题ppt课件.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五节第五节 指派问题(指派问题(Assignment Problem)1. 标准指派问题的提法及模型 指派问题的标准形式是:有n个人和n件事,已知第i个人做第j件事的费用为cij(i,j=1,2,n),要求确定人和事之间的一一对应的指派方案,使完成这n件事的总费用最小。 njiorxxxtsxcZijnjijniijninjijij,2,1,1011.min1111数学模型为:01ijx若指派第i个人做第j件事若不指派第i个人做第j件事(i,j=1,2, n) 设n2个0-1变量其中矩阵C称为是效率矩阵或系数矩阵。 其解的形式可用0-1矩阵的形式来描述,即 (xij)nn。 标准的指派问题是
2、一类特殊的整数规划问题,又是特殊的0-1规划问题和特殊的运输问题。1955年W. W. Kuhn利用匈牙利数学家D. Konig关于矩阵中独立零元素的定理, 提出了解指派问题的一种算法, 习惯上称之为匈牙利解法。2. 匈牙利解法 匈牙利解法的关键是指派问题最优解的以下性质:若从指派若从指派问题的系数矩阵问题的系数矩阵C=(cij)的某行(或某列)各元素分别减去一个)的某行(或某列)各元素分别减去一个常数常数k,得到一个新的矩阵,得到一个新的矩阵C=(cij),则以,则以C和和C为系数矩阵的两为系数矩阵的两个指派问题有相同的最优解。个指派问题有相同的最优解。(这种变化不影响约束方程组,而只是使目
3、标函数值减少了常数k,所以,最优解并不改变。) 对于指派问题,由于系数矩阵均非负,故若能在在系数矩阵中找到n个位于不同行和不同列的零元素(独立的0元素),则对应的指派方案总费用为零,从而一定是最优的。作变换,其不变性是最优解匈牙利法匈牙利法的步骤如下: 步1:变换系数矩阵。对系数矩阵中的每行元素分别减去该行的最小元素;再对系数矩阵中的每列元素分别减去该列中的最小元素。若某行或某列已有0元素,就不必再减了(不能出现负元素)。 步2:在变换后的系数矩阵中确定独立0元素(试指派)。若独立0元素已有n个,则已得出最优解;若独立0元素的个数少于n个,转步3。 确定独立0元素的方法:当n较小时,可用观察法
4、、或试探法;当n较大时,可按下列顺序进行 从只有一个0元素的行(列)开始,给这个0元素加圈,记作,然后划去所在的列(行)的其它0元素,记作。给只有一个0元素的列(行)的0加圈,记作,然后划去所在行的0元素,记作。反复进行,直到系数矩阵中的所有0元素都被圈去或划去为止。 如遇到行或列中0元素都不只一个(存在0元素的闭回路),可任选其中一个0元素加圈,同时划去同行和同列中的其它0元素。被划圈的0元素即是独立的0元素。步3:作最少数目的直线,覆盖所有0元素(目的是确定系数矩阵的下一个变换),可按下述方法进行1) 对没有的行打“”号;2) 在已打“”号的行中,对 所在列打“”3)在已打“”号的列中,对
5、所在的行打“”号;4)重复2)3),直到再也找不到可以打“”号的行或列为止;5)对没有打“”的行划一横线,对打“”的列划一纵线,这样就得到覆盖所有0元素的最少直线数。 步4:继续变换系数矩阵,目的是增加独立0元素的个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以保持原来0元素不变(为了消除负元素)。得到新的系数矩阵,返回步2。 以例说明匈牙利法的应用。9107104106614159141217766698979712例1:求解效率矩阵为如下的指派问题的最优指派方案。解:第一步:系数矩阵的变换(目的是得到某行或
6、列均有0元素)910710410661415914121776669897971256360400892751000003220205第二步:确定独立0元素56360400892751000003220205元素的个数m=4,而n=5,进行第三步。第三步:作最少的直线覆盖所有的0元素,目的是确定系数矩阵的下一个变换。第四步:对上述矩阵进行变换,目的是增加独立0元素的个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以保持原来0元素不变(消除负元素)。得到新的系数矩阵。(它的最优解和原问题相同,为什么?)563604
7、008927510000032202050000100100100000100000010由解矩阵可得指派方案和最优值为32。34140400811053800003420207 例2 某大型工程有五个工程项目,决定向社会公开招标,有五家建筑能力相当的建筑公司分别获得中标承建。已知建筑公司Ai(I=1,2,3,4,5)的报价cij(百万元)见表,问该部门应该怎样分配建造任务,才能使总的建造费用最小? 工程公司B1B2B3B4B5A14871512A279171410A3691287A46714610A569121065 ,2, 1,105 ,2, 115 ,2, 11.61084min5151
8、55541211jiorxixjxtsxxxxZijjijiij61012961061476781296101417971215784解:第一步:系数矩阵的变换(目的是得到某行或列均有0元素)04320405001232037710811030第二步:确定独立0元素, 即加圈元素的个数m=4,而n=5,进行第三步。04320405001232037710811030第三步:作最少的直线覆盖所有的0元素,目的是确定系数矩阵的下一个变换。第四步:对上述矩阵进行变换,目的是增加独立0元素个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加
9、上这一最小元素,以保持原来0元素不变(消除负元素)。得到新的系数矩阵。(它的最优解和原问题相同,为什么?因为仅在目标函数系数中进行操作)04320405001232037710811030043204050001211266018110300432140501012102660081103104321405010121026600811031此矩阵中已有5个独立的0元素,故可得指派问题的最优指派方案为:1000001000000010001000100也就是说,最优指派方案为:让A1承建B3, A2承建B2,A3承建B1,A4承建B4,A5承建B5。这样安排建造费用为最小,即7+9+6+6+6
10、=34(百万元)3. 一般的指派问题 在实际应用中,常会遇到各种非标准形式的指派问题。通常的处理方法是先将它们转化为标准形式,然后用匈牙利解法求解。 最大化指派问题 设最大化指派问题系数矩阵C中最大元素为m。令矩阵B=(bij)=(m-cij), 则以B为系数矩阵的最小化指派问题和以C为系数矩阵的原最大化指派问题有相同的最优解。 人数和事数不等的指派问题 若人少事多,则添上一些虚拟的“人”。这些虚拟的人作各事的费用系数可取0,理解为这些费用实际上不会发生。若人多事少,则添上一些虚拟的“事”。这些虚拟的事被各人做的费用系数同样也取0。 一个人可做几件事的指派问题 若某个人可做几件事,则可将该人看
11、做相同的几个人来接受指派。这几个人作同一件事的费用系数当然都一样。 某事一定不能由某人作的指派问题 若某事一定不能由某个人做,则可将相应的费用系数取做足够大的数M。 例3:对于例2的指派问题,为了保证工程质量,经研究决定,舍弃建筑公司A4和A5,而让技术力量较强的建设公司A1,A2,A3参加招标承建,根据实际情况,可允许每家建设公司承建一项或二项工程。求使总费用最少的指派方案。 工程公司B1B2B3B4B5A14871512A279171410A3691287解:由于每家建筑公司最多可以承建两项,因此可把每家建筑公司看成两家建筑公司,其系数矩阵为33221178129678129610141797101417971215784121578454321AAAAAABBBBB上面的系数矩阵有6行5列,为了使“人”和“事”的数目相同,引入一件虚拟的事B6,使之成为标准指派问题的系数矩阵:332211078129607812960101417970101417970121578401215784654321AAAAAABBBBBB然后,用匈牙利解法求解。可得费用最省为4+7+9+8+7=35(百万元)
限制150内