体育统计学复习资料精品文档13页.doc
《体育统计学复习资料精品文档13页.doc》由会员分享,可在线阅读,更多相关《体育统计学复习资料精品文档13页.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流第一章第二章第三章第四章第五章第六章第七章 体育统计学复习资料【精品文档】第 12 页第八章 绪论1 体育统计学的定义是一门将概率论和数理统计的理论与方法应用于体育领域,为体育实践提供解决问题的方法的工具学科。属方法论学科范畴。1 总体:根据统计研究的具体研究目的而确定的同质对象的全体。 样本:根据需要与可能从总体中抽取部分研究对象所组成的子集。 个体;组成总体的每个基本单位,即被研究对象的单个观测值。2 样本容量(含量):样本中所含个体的数目。记为:“n”。3 总体容量:总体中所含个体的数目。记为:“N”。4 指标:对于自然科学研究者来说,是在实验观察
2、中用来指示(反映)研究对象中某些特征的可被研究者或仪器感知的一种现象标志。5 统计量:由样本所得,关于样本特征的统计指标。6 有效数字:通常将仅保留末一位估计数字其余数字为准确数的数字称为有效数字。 统计误差:统计分析过程中产生的数据与真值之间的差距。分为两大类:测量误差和抽样误差。7 系统误差:由于实验仪器、操作人员的操作水平、以及实验环境等因素产生的误差。1 研究设计: 确定研究方向选择课题作出研究设计(基本过程) 调查设计(问卷调查、专家访问、文献资料等)研究设计 试验设计2 对试验设计的几点要求:1)所取的每个试验对象的测量值,不能有系统误差。2)应该选取适当的试验指标(价值)。3)所
3、测得的数据应能找到相应的数理统计方法进行分析,使得所取数据能够满足统计分析的基本模型。3 数据的收集应注意的问题: 1)保证资料的完整性、有效性和可能性。2)保证样本的代表性(遵循随机抽样原则)。附:几种常用的随机抽样方法 1)单纯随机抽样法(抽签法、随机数表法) 2)机械抽样 3)分层抽样(类型抽样) 4)整群抽样第二节 资料的整理频率:(在统计学中)是指在一次试验过程中,某事件发生的次数与样本容量的比值。一、资料的审核审核数据资料的准确性和完整性。步骤如下:1 初审2 逻辑检查3 复核二、频数分布表和频数直方图的制作 整理步骤如下: 1 求极差2 确定组数与组距 3 确定分组点及各组的上下
4、限4 整理频数分布表 5 绘制频数直方图 第三章 样本特征数第一节 集中位置量数一、定义:统计学中定义为:反映一群性质相同的观察值的平均水平或集中趋势的统计指标。二、种类:1 中位数: 2 众数:3 平均数: 第二节 离中位置量数统计学中将离中位置量数定义为:描述一群性质相同的观察值的离散程度的统计指标。二、种类:极差、绝对差、平均差、方差、标准差、变异系数。 1 极差: 2 绝对差:指所有样本观测值与平均数之差的绝对值的和。3 平均差:指所有样本观测值与平均数之差的绝对值的和的平均数。4. 标准差:方差的正平方根。 开平方根的笔算方法(拓宽内容):1) 以小数点为基点,将数据每两位向两边分段
5、。如:1234.56702) 然后由最高位开始估算(乘方和乘法)3) 每段两位数字一起带下4) 从第二位“商”的数字起,必须将以前的“商”的所有数字先乘以“20”,然后再考虑所上的“商”。依次向下例:求=?一、 变异系数1. 定义:指同一样本的标准差与平均数的比值。记为“CV”. CV= 2. 意义:用于比较不同指标间数据的变化程度。结论: CV值大,说明数据的变化程度大;CV值小,说明数据的差异小。第四节 平均数和标准差在体育实践中的应用一可以作为选择参赛运动员的依据(和)二变异系数在稳定性研究中的应用和大,稳定性差;和小,则稳定性高。三“法”在原始数据逻辑审核中的应用第四章 正态分布 第一
6、节 概率及概率分布1 随机事件: 是对于随机现象的一次观测结果。2 随机变量随机事件的数量化。 1) 定义(描述性的): 当用一个变量来表示随机试验的结果时,这个变量称为随机变量。 1) 频率:某事件A在n次试验中出现V次,则V/n称为事件A的频率。 2) 概率(描述性定义): 随机事件A的频率随着试验次数的变化而变化,当时,就越来越趋近于一个常数m, 则这个常数m 称为随机事件A的概率。记为,即: (n)1 小概率事件原则:在统计学中,一般将0.05的事件称为小概率事件,小概率事件在一次试验中被看作为不可能事件。2 古典概型概率的计算:1) 古典概型是指能够同时满足以下两个条件的概率试验模型
7、。 全部基本事件的个数是有限的; 每一个基本事件发生的可能性相等。1 离散型随机变量概率分布的描述 变量的取值是有限的,可数的,可用“概率分布列”来描述。2 连续型随机变量概率分布的描述 变量的取值是无限的,不可数的,可用“概率密度函数”来描述。(二)非标准正态分布1 标准化公式设 ,则此公式反映出新设变量 与原变量 之间的关系,其实是两种分布规律之间的关系。1 非标准正态分布概率的计算总结:1)已知点求面积时,关键是先将点标准化,然后查表求解; 2)已知面积求解时,关键是先找出到某点之间的面积,即,然后查表求X标准化之后的标准点A,最后由标准化公式求X的值,即 由 得到 例1已测得某大学男生
8、跳远成绩的平均数5.20M,标准差0.15M,原始成绩基本呈正态分布,该校男生共1500人,现要分别估计跳远成绩在5.50M以上,5.30M到5.50M,4.9M到5.30M,4.9M以下的人数。解:如图,要求出各区间的分布人数 必须先求出各区间的概率,即为: Y “已知点,求面积”。 1).先将点 5.50, 5.30, 4.9标准化, 2).求各区间的概率: 0 4.9 5.3 5.5 X = 1-0.9772 = 0.0228 = 1-0.0228-0.7486 Y = 0.2286 = 0.7486-0.0228-200.67 2 X = 0.72583).求各区间的人数: = 150
9、00.0228 = 34(人) = 15000.2286 = 343(人) = 15000.7258 = 1089(人) = 15000.0228 = 34(人)(二)利用正态分布制定考核标准例1.测得上届学生铅球成绩()M,现需确定本届学生铅球成绩考核标准,假定两届学生铅球成绩服从同一正态分布,规定各等级的人数比例为:优秀10,良好20,中等30,及格32,不及格8,试确定各等级的成绩标准。解:如图,即已知面积,求点。 1).设有,使得 = 0.1 即 = 10.1 = 0.9 Y 查表有: = 0.9 由标准化公式 X = 7.812(M) 同理得到: = 7.508(M) = 7.2(M
10、) = 6.736(M). (学生练习时,注意田径赛中高优指标和低优指标的区别。)2. 统一变量的方法 1) U 分法 是将原始变量转换成标准正态分布的横轴变量的一种统一单位的方法。公式为: (田赛) 或 (径赛)例1某跳远样本统计量为5.65M,0.40M,若学生甲成绩为5.85M,乙为5.25M,试计算两学生的U分。 解:将已知数据代入公式,得: 例2某100M成绩样本统计量,学生甲成绩,乙成绩 求其U分。 解:100M成绩为低优指标,将数据代入公式,得:2) Z分法(标准百分) (其中“”用于低优指标,如径赛;“”用于高优指标。) 例1某队运动员100M成绩秒,其中甲成绩为 13.3秒,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 体育 统计学 复习资料 精品 文档 13
限制150内