《初一数学行程问题常见题型分析-4页word资料.doc》由会员分享,可在线阅读,更多相关《初一数学行程问题常见题型分析-4页word资料.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流初一数学行程问题常见题型分析【精品文档】第 4 页行程问题常见题型分析一、弄清行程问题中基本的量和它们之间的关系。行程问题中有三个基本量:速度、时间、路程。这三个量之间的关系是:路程时间速度变形可得到:速度路程/时间时间路程/速度这三个量的作用是知道其中两个就可以表示第三个。二、行程问题常见类型1、普通相遇问题。 2、追及(急)问题。3、顺(逆)水航行问题。 4、跑道上的相遇(追急)问题三、行程问题中的等量关系所谓等量关系就是意义相同的量,能用等量连接的关系。若路程已知,则应找时间的等量关系和速度的等量关系;若速度已知,则应找时间的等量关系和路程的等量关
2、系;若时间已知,则找路程的等量关系和速度的等量关系。在航行问题中还有两个固定的等量关系,就是:顺水速度静水速度水流速度 逆水速度静水速度水流速度四、分类举例例1:小明每天早上要在7:50之前赶到距离家1000米的学校去上学。小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。爸爸追小明用了多长时间?分析:此题中小明的速度,爸爸的速度均已告诉。因此速度之间不存在等量关系。我们只能在父子二人的时间和父子二人的路程上找等量关系。由于小明比爸爸早出发5分钟,且相遇时在同一个时刻,因此相遇时爸爸比小明少用5分钟,可得时间的等量
3、关系:爸爸的时间5分钟小明的时间,当爸爸追上小明时,父子二人都是从家走到相遇的地点,故爸爸行的路程与小明行的路程相等。得路程相等关系。爸爸路程小明路程,如果爸爸追上小明用了x分钟,则第一个相等关系得:小明用了(x5)分钟,带入第二个等量关系,可得方程180x80(x5)例2:甲乙两人在环形跑道上练习跑步。已知环形跑道一圈长400米,乙每秒跑6米,甲的速度是乙的4/3倍。若甲、乙两人在跑道上相距8米处同时相向出发,经过几秒两人相遇?若甲在乙前8米处同时同向出发,那么经过多长时间两人首次相遇?分析:此题甲乙两人的速度均已告诉,因此我们只能在时间中找等量关系,在路程中找等量关系。第一问是一个在环形跑
4、道上的相遇问题。由于两人反向同时出发,最后相遇。故相遇时两人跑的时间是相等。得到第一个等量关系:甲时间乙时间由于两人出发时相距8米,所以当两人第一次相遇时,共跑了(4008)米。故可以得到第二个路程的等量关系甲路程乙路程4008设x秒后两人相遇,则相遇时乙跑了6x米,甲跑了6x米,代入第二个等量关系中可得方程6x6x4008第二问是一个环形跑道上的追及问题。因两人同时出发,故当甲追上乙时,两人用时相同。可得第一个时间等量关系甲时间乙时间由于两人同向出发时相距8米,且速度较快的甲在前,故当两人第一次相遇时甲必须比乙多跑(4008)米,可得第二个行程的等量关系甲路程=乙路程+400-8设X秒后甲与
5、乙首次相遇,此时甲跑了6x米,乙跑了6x米,代入第二个等量关系可得方程:6x6x4008例3:一货轮航行于A、B两个码头之间,水流速度为3km/小时,顺水需2.5小时,逆水需3小时,求两码头之间的距离。分析:此题是一个航行问题,由于顺水所需时间,逆水所需时间均已告诉,所以我们只找速度等量关系,路程等量关系,而其速度的两个等量关系时固有的,即:顺水速度=静水速度+水速、逆水速度=静水速度-水速。对此提来讲就是顺水速度=静水速度+3;逆水速度=静水速度-3.路程关系是比较明显的,即:顺水路程=逆水路程我们用来列方程,那就是需要顺水时间、顺水速度、逆水时间、逆水速度,两个时间已知,只要放出静水速度为
6、xkm/h,由、就可以分别列出表示出顺水速度=(x+3)km/h,逆水速度=(x+3)km/h,代入可得方程:2.5(x+3)=3(x-3)我们看到设出来的未知数不是题中要问的,这就是间接设元。若设出来的未知数正好是题中所要求的,那就是直接设元。好多题都是间接设元比较简单。此题若是直接设元会比较难。例4:一列火车匀速前进,从开进入300米长的隧道到完全驶出隧道共用了20秒,隧道顶部一盏固定的聚关灯照射火车10秒,这列火车的长度是多少?分析:此题的关键是把题意理解清楚。“开始进入隧道到完全驶出隧道”的意思是火车进入隧道到火车完全离开隧道。此过程火车行驶的路程应为隧道的长度与火车长度的和。故可得第
7、一个等量关系火车路程=火车长度+300“聚光灯照射火车10秒”的意思是火车以它的速度10秒行进的路程是火车的长度。故可得第二个等量关系火车长度=火车速度10设该火车的速度为x米/秒,则由得火车长度为10x米。代入第一个等量关系中,可得方程20x=10x+300例5:某行军总队以8千米/时的速度前进。队末的通信员以12千米/时的速度赶到排头送一封信,送到后立即返回队尾,共用时14.4分钟。求这支队伍的长度。分析:此题在通信员追上排头以前是一个追急问题。从排头回到排尾是一个相遇问题。我们应分着两种情形去考虑问题。由时间共用14.4分钟可得一个等量关系:通信员追上排头的时间+通信员回到排尾的时间=14.4分钟再由两个固定关系相遇路程/速度和=相遇时间追急路程/速度差=追击时间可得两个等量关系:相遇路程/8+12=相遇时间追急路程/12-8=追急时间设队伍长x千米,则追急时间为 小时,相遇时间为 小时,代入第个等量关系中可得方程 + =总之,利用列方程来解决问题的方法是数学里面一个重要思想,就是方程思想。具体做法是从题中找出反映题中全部意义的所有等量关系,然后根据等量关系用字母代替未知数列出方程
限制150内