九年级下册数学课件26.2 第1课时 实际问题中的反比例函数.ppt





《九年级下册数学课件26.2 第1课时 实际问题中的反比例函数.ppt》由会员分享,可在线阅读,更多相关《九年级下册数学课件26.2 第1课时 实际问题中的反比例函数.ppt(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习目标,1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力. 2. 能够通过分析实际问题中变量之间的关系,建立反 比例函数模型解决问题,进一步提高运用函数的图 象、性质的综合能力. (重点、难点) 3. 能够根据实际问题确定自变量的取值范围,导入新课,情境引入,请欣赏成都拉面小哥的“魔性”舞姿,拉面小哥舞姿妖娆,手艺更是精湛. 如果他要把体积为 15 cm3 的面团做成拉面,你能写出面条的总长度 y (单位:cm) 与面条粗细 (横截面积) S (单位:cm2)的函数关系式吗?,你还能举出我们在日常生活、生产或学习中具有反比例函数关系的量的实例吗?,例1 市煤
2、气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室. (1) 储存室的底面积 S (单位:m2) 与其深度 d (单位:m) 有怎样的函数关系?,讲授新课,解:根据圆柱体的体积公式,得 Sd =104,, S 关于d 的函数解析式为,典例精析,(2) 公司决定把储存室的底面积 S 定为 500 m2,施工队 施工时应该向下掘进多深?,解得 d = 20. 如果把储存室的底面积定为 500 m,施工时应 向地下掘进 20 m 深.,解:把 S = 500 代入 ,得,(3) 当施工队按 (2) 中的计划掘进到地下 15 m 时,公 司临时改变计划,把储存室的深度改为 15 m. 相 应地
3、,储存室的底面积应改为多少 (结果保留小 数点后两位)?,解得 S666.67.,当储存室的深度为15 m 时,底面积应改为 666.67 m.,解:根据题意,把 d =15 代入 ,得,第 (2) 问和第 (3) 问与过去所学的解分式方 程和求代数式的值的问题有何联系?,第 (2) 问实际上是已知函数 S 的值,求自变量 d 的取值,第 (3) 问则是与第 (2) 问相反,想一想:,1. 矩形面积为 6,它的长 y 与宽 x 之间的函数关系用 图象可表示为 ( ),B,练一练,A.,x,y,x,y,x,y,x,y,2. 如图,某玻璃器皿制造公司要制造一种容积为1升 (1升1立方分米)的圆锥形
4、漏斗 (1) 漏斗口的面积 S (单位:dm2)与漏斗的深 d (单位: dm) 有怎样的函数关系?,解:,(2) 如果漏斗的深为10 cm,那么漏斗口 的面积为多少 dm2?,解:10cm=1dm,把 d =1 代入解析式,得 S =3. 所以漏斗口的面积为 3 dm2.,(3) 如果漏斗口的面积为 60 cm2,则漏斗的深为多少?,解:60 cm2 = 0.6 dm2,把 S =0.6 代入解析式,得 d =5. 所以漏斗的深为 5 dm.,例2 码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间. (1) 轮船到达目的地后开始卸货,平均卸货速度v (单位: 吨/天)与卸货天
5、数 t 之间有怎样的函数关系?,提示:根据平均装货速度装货天数=货物的总量,可以求出轮船装载货物的总量;再根据平均卸货速度=货物的总量卸货天数,得到 v 关于 t 的函数解析式.,解:设轮船上的货物总量为 k 吨,根据已知条件得 k =308=240, 所以 v 关于 t 的函数解析式为,(2) 由于遇到紧急情况,要求船上的货物不超过 5天卸 载完毕,那么平均每天至少要卸载多少吨?,从结果可以看出,如果全部货物恰好用 5 天卸载 完,则平均每天卸载 48 吨. 而观察求得的反比例 函数的解析式可知,t 越小,v 越大. 这样若货物 不超过 5 天卸载完,则平均每天至少要卸载 48 吨.,解:把
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级下册数学课件26.2 第1课时 实际问题中的反比例函数 九年级 下册 数学 课件 26.2 课时 实际问题 中的 反比例 函数

限制150内