微专题圆锥曲线几何条件的处理策略共11页word资料.doc
《微专题圆锥曲线几何条件的处理策略共11页word资料.doc》由会员分享,可在线阅读,更多相关《微专题圆锥曲线几何条件的处理策略共11页word资料.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流微专题圆锥曲线几何条件的处理策略【精品文档】第 11 页微专题圆锥曲线几何条件的处理策略圆锥曲线处理心法:一、几何条件巧处理,事半功倍! 二、谋定思路而后动,胸有成竹!三、代数求解不失分,稳操胜券! 四、解后反思收货大,触类旁通 !1.平行四边形处理策略几何性质代数实现对边平行斜率相等,或向量平行对边相等长度相等,横(纵)坐标差相等对角线互相平分中点重合例1.(2015,新课标2理科20)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为 ()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能
2、,求此时的斜率,若不能,说明理由【答案】()详见解析;()能,或【解析】试题分析:()题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点的坐标,代入椭圆方程并作差,出现弦的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦的中点,并寻找两条直线斜率关系;()根据()中结论,设直线方程并与椭圆方程联立,求得坐标,利用以及直线过点列方程求的值试题解析:()设直线,将代入得,故,于是直线的斜率,即所以直线的斜率与的斜率的乘积为定值()四边形能为平行四边形因为直线过点,所以不过原点且与有两个交点的充要条件是,由()得的方程为设点的横坐标为由得,即将点的坐标
3、代入直线的方程得,因此四边形为平行四边形当且仅当线段与线段互相平分,即于是解得,因为,所以当的斜率为或时,四边形为平行四边形考点:1、弦的中点问题;2、直线和椭圆的位置关系2.直角三角形处理策略几何性质代数实现(1)两边垂直斜率乘积为-1,或向量数量积为0(2)勾股定理两点的距离公式(3)斜边中线性质(中线等于斜边一半)两点的距离公式例2.椭圆()的离心率为,长轴端点与短轴端点间的距离为,(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率解析:(2)根据题意,过点满足题意的直线斜率存在,设,联立消去得, 令,解得。设两点的坐标分别为,则,(1)当为直角
4、时, 所以,即,所以所以,解得(2)当或为直角时,不妨设为直角,此时,所以即又,将代入,消去得,解得或(舍去)将代入得,所以,经检验所得值均符合题意,综上,的值为和3.等腰三角形处理策略几何性质代数实现(1)两边相等两点的距离公式(2)两角相等底边水平或竖直时,两腰斜率相反(3)三线合一(垂直且平分)垂直:斜率或向量 平分:中点坐标公式例3.在直角坐标系中,已知点,为动点,且直线与直线斜率之积为,(1)求动点的轨迹方程;(2)设过点的直线与椭圆交于两点,若点在轴上,且,求点的纵坐标的范围解析:(1)设动点的坐标为,依题意可知整理得,所以动点的轨迹的方程为(2)当直线的斜率不存在时,满足条件的点
5、的纵坐标为0,当直线的斜率存在时,设直线的方程为,将代入,并整理得,设,则,设的中点为,则,所以,由题意可知,又直线的垂直平分线的方程为,令解得,当时,因为,所以当时,因为,所以,综上所述,点的纵坐标的范围是.4.菱形的处理策略例4.椭圆M:()过点,且离心率为(1)求椭圆M的方程;(2)是否存在菱形,同时满足以下三个条件:点在直线上; 点在椭圆上 ; 直线的斜率等于1;如果存在,求出点的坐标,如果不存在,说明理由。解析:(1)由题意得解得,;所以椭圆M的方程为(2)不存在满足题意的菱形,理由如下:假设存在满足题意的菱形,设直线的方程为,且,线段的中点,则由可得,由可得,又,所以,若四边形为菱
6、形,则是的中点,点的纵坐标,又因为点在椭圆上,所以与矛盾,故不存在满足题意的菱形。5.圆的处理策略几何性质代数实现(1)点在圆上点与直径端点向量数量积为零(2)点在圆外点与直径端点向量数量积为正数(3)点在圆内点与直径端点向量数量积为负数例5.已知椭圆,点,分别是椭圆的左焦点、左顶点,过点的直线(不与轴重合)交于两点,(1)求的离心率及短轴长;(2)是否存在直线,使得点在以线段为直径的圆上,若存在,求出直线的方程;若不存在,说明理由. (1)由得,所以的离心率为,短轴长为;(2)方法一:由题意知,设,则,因为所以,所以点不在以为直径的圆上,即不存在直线,使得点在以线段为直径的圆上。方法二、由题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 圆锥曲线 几何 条件 处理 策略 11 word 资料
限制150内