《苏科版九年级上册数学 期中达标检测卷.doc》由会员分享,可在线阅读,更多相关《苏科版九年级上册数学 期中达标检测卷.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、期中达标检测卷一、选择题(每题3分,共24分)1解方程x(x2)3(x2),最适当的解法是()A直接开平方法 B因式分解法 C配方法 D公式法2已知x1是一元二次方程(m2)x24xm20的一个根,则m的值为()A1或2 B1 C2 D03如图,在O的内接四边形ABCD中,D135,则B的度数为()A45 B60 C65 D704如图,在O中,弦CD与直径AB相交于点E,连接OC,BD.若ABD20,AED80,则COB的度数为()A80 B100 C120 D1405如果关于x的一元二次方程kx23x10有两个实数根,那么k的取值范围是()Ak Bk且k0 Ck且k0 Dk6如图,BCD是O
2、的内接三角形,D70,OABC交O于点A,连接AC,则OAC的度数为()A40 B55 C70 D1107已知a,b是一个等腰三角形的两边长,且满足a2b26a8b250,则这个等腰三角形的周长为()A10 B11 C10或11 D128某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,所在圆的圆心为O,点C,D分别在OA,OB上已知消防车道半径OC12 m,消防车道宽AC4 m,AOB120,则弯道外边缘的长为()A8 m B4 m C m D m二、填空题(每题2分,共20分)9方程x2x0的解是_10已知O的半径为5 cm,点P在O内,则OP_5 cm.(填“”“”或“”)11
3、设a,b是一元二次方程x2x2 0230的两个实数根,则ab的值为_12如图,若的度数为105,则BAE_. 13如图,把一只篮球放在高为16 cm的长方体纸盒中,发现篮球的一部分露出盒子,其截面如图所示若量得EF24 cm,则该篮球的半径为_cm.14已知x1,x2是一元二次方程x24x70的两个实数根,则x124x1x2x22的值是_151275年,我国南宋数学家杨辉在田亩比类乘除算法中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步问阔及长各几步意思是:矩形的面积为864平方步,宽比长少12步,问宽和长各几步若设长为x步,则可列方程为_16如图,在矩形ABCD中,DC14 cm
4、,AD6 cm,点P从点A出发沿AB以4 cm/s的速度向点B移动;同时,点Q从点C出发沿CD以1 cm/s的速度向点D移动,两点同时出发,一点到达终点时另一点即停设运动时间为t s,则t_时,P,Q两点之间的距离是10 cm.17如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b20 mm,则边长a_mm.18有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,ABC90,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN4,E是MN的中点,点D到BA,BC的距离分别为
5、4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_三、解答题(19题6分,2022题每题8分,23题10分,2426题每题12分,共76分)19解方程:x22x2x1.20如图,AB是半圆的直径图中,点C在半圆外;图中,点C在半圆内,请仅用无刻度的直尺按要求画图(1) 在图中,画出ABC的三条高的交点;(2) 在图中,画出ABC中AB边上的高21如图,OA,OB,OC是O的三条半径,D,E分别是OA,OB的中点,CD与CE相等吗?为什么?22已知关于x的一元二次方程x2(2m2)x(m22m)0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两个实数根是x1,x2,且x1x2x1x
6、210,求m的值23如图,AB是O的直径,C为半径OA的中点,CDAB交O于点D,E,DFAB交O于点F,连接AF,AD.(1)求DAF的度数;(2)若AB10,求阴影部分的面积(结果保留)24如图,A,B是O上两点,且ABOA,连接OB并延长到点C,使BCOB,连接AC.(1)求证:AC是O的切线;(2)D,E分别是AC,OA的中点,DE所在直线交O于点F,G,OA4,求GF的长25如图所示,在ABC中,C90,AC6 cm,BC8 cm,点P从点A出发沿AC以1 cm/s的速度向点C移动,点Q从点B出发沿BC以2 cm/s的速度向点C移动(1)如果P,Q两点同时出发,当某个点先到达终点时,
7、运动终止问:几秒钟后PCQ的面积等于8 cm2?(2)如果P,Q两点同时出发,且点Q到达点C后立即返回,速度保持不变,直到点P到达点C后同时停止运动,那么在整个移动过程中,是否存在某一时刻,使得PCQ的面积等于1 cm2?若存在,求出运动时间;若不存在,请说明理由26如图,AB是O的直径,点C,D都在O上,且CD平分ACB,交AB于点E,连接AD.(1)求证:ABDBCD;(2)若DE13,AE17,求O的半径;(3)作DFAC于点F,试探究线段AF,DF,BC之间的数量关系,并说明理由答案一、1B2B3A4C5C 6B7C8C二、9x10,x21 10112 0231252.51312.51
8、4215x(x12)86416171822点拨:如图,连接BE,BD.由题意知BD2.MBN90,MN4,E是MN的中点,BEMN2.B,D两点线段最短,当点E落在线段BD上时,DE的值最小,DE的最小值为22.三、19解:把方程x22x2x1化成一般形式,得x24x10.a1,b4,c1,b24ac(4)241(1)200,x.x12,x22.20解:(1)如图,点P即为所求.(2)如图,CD即为所求.21解:CD与CE相等.,AOCBOC,又OAOB,D,E分别是OA、OB的中点,ODOE.在DOC和EOC中,DOCEOC(SAS),CDCE.22(1)证明:a1,b(2m2),cm22m
9、,b24ac(2m2)24(m22m)40,方程有两个不相等的实数根.(2)解:x1x22m2,x1x2m22m,x1x2x1x210,2m2m22m10,整理得,m2120.移项,得m212.m是12的平方根,m2,即m12,m22.23解:(1)连接EF.DFAB,CDAB,EDFECB90,EF是O的直径.C为半径OA的中点,OCOAOE,E30,DAFE30.(2)连接OD,则DOF2E60.DFAB,SADFSDOF,S阴影部分S扇形ODF.ODAB5,S阴影部分.24(1)证明:ABOAOB,OAB是等边三角形.AOBOBAOAB60.BCOB,BCAB,BACC.OBABACC6
10、0,BACC30.OACOABBAC90.OAAC.点A在O上,AC是O的切线.(2)解:如图,连接OF,过点O作OHGF于点H.GF2HF,OHEOHF90.D,E分别是AC,OA的中点,OEAEOA42,DEOC.OEHAOB60.在RtOHE中,HOE30,EHOE1,OH.在RtOHF中,HF.GF2HF2.25解:(1)616(s),824(s).设t(0t4)s后PCQ的面积等于8 cm2,则CP(6t) cm,CQ(82t) cm,根据题意,得(6t)(82t)8,整理,得t210t160,解得t12,t28(不合题意,舍去).答:2 s后PCQ的面积为8 cm2.(2)存在当运
11、动时间为t(0t4)s时,CP(6t) cm,CQ(82t) cm,根据题意,得(6t)(82t)1,整理,得t210t230,解得t15,t25(不合题意,舍去);当运动时间为t(4t6)s时,CP(6t) cm,CQ(2t8) cm,根据题意,得(6t)(2t8)1,整理,得t210t250,解得t3t45.答:当运动时间为(5)s或5 s时,PCQ的面积等于1 cm2.26(1)证明:CD平分ACB,ACDBCD,ACDABD,ABDBCD.(2)解:过点E作EMAD于点M.ACDBCD,ADBD.AB是O的直径,ACB90,ADB90,DABDBA45.MAEMEA45,AMME.在RtAME中,AE17,设AMMEx,则AM2ME2AE2,即x2x2172,解这个方程得x1,x2(不合题意,舍去).MEAM.DE13,DM,ADAMDM12,AB24,AOAB12.即O的半径为12.(3)解:AFBCDF.过点D作DNCB,交CB的延长线于点N.四边形DACB是O的内接四边形,DAFCBD180.又DBNCBD180,DBNDAF.DFAC,DNCB,CD平分ACB,AFDDNB90,DFDN,DAFDBN(AAS).AFBN.易知DFCDNC,CFCN.FCDABD45,FCDFDC45.DFCF,CNBNBCAFBCCFDF.即AFBCDF.
限制150内