人教版八年级上册数学 13.3.1 第2课时 等腰三角形的判定 教案1.doc





《人教版八年级上册数学 13.3.1 第2课时 等腰三角形的判定 教案1.doc》由会员分享,可在线阅读,更多相关《人教版八年级上册数学 13.3.1 第2课时 等腰三角形的判定 教案1.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时等腰三角形的判定1掌握等腰三角形的判定定理及其推论(重点)2掌握等腰三角形判定定理的运用(难点)一、情境导入某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得ACB为30度,这时,地质专家测得BC的长度是50米,就可知河流宽度是50米同学们,你们想知道这样估测河流宽度的根据是什么吗?他是怎么知道BC的长度是等于河流宽度的呢?今天我们就要学习等腰三角形的判定二、合作探究探究点一:等腰三角形的判定【类型一】 确定等腰三角形的个数 如图,在ABC中,ABAC,A36,BD、CE分别
2、是ABC、BCD的角平分线,则图中的等腰三角形有()A5个 B4个C3个 D2个解析:共有5个(1)ABAC,ABC是等腰三角形;(2)BD、CE分别是ABC、BCD的角平分线,EBCABC,ECBBCD.ABC是等腰三角形,EBCECB,BCE是等腰三角形;(3)A36,ABAC,ABCACB(18036)72.又BD是ABC的角平分线,ABDABC36A,ABD是等腰三角形;同理可证CDE和BCD也是等腰三角形故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数【类型二】 在坐标系中确定三角形的个数 已知平面直角坐标系
3、中,点A的坐标为(2,3),在y轴上确定点P,使AOP为等腰三角形,则符合条件的点P共有()A3个 B4个 C5个 D6解析:因为AOP为等腰三角形,所以可分三类讨论:(1)AOAP(有一个)此时只要以A为圆心AO长为半径画圆,可知圆与y轴交于O点和另一个点,另一个点就是点P;(2)AOOP(有两个)此时只要以O为圆心AO长为半径画圆,可知圆与y轴交于两个点,这两个点就是P的两种选择;(3)APOP(一个)作AO的中垂线与y轴有一个交点,该交点就是点P的最后一种选择综上所述,共有4个故选B.方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏【类型三】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八年级上册数学 13.3.1 第2课时 等腰三角形的判定 教案1 人教版八 年级 上册 数学 13.3 课时 等腰三角形 判定 教案

限制150内