《初一数学第六章 实数知识点归纳.doc》由会员分享,可在线阅读,更多相关《初一数学第六章 实数知识点归纳.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 实数 知识点归纳一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定结构的数,如0.1010010001等;(3)有特定意义的数,如圆周率,或化简后含有的数,如+8等;3. 实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的
2、每一个点都是表示一个实数。与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大二、实数的倒数、相反数和绝对值 (3分)1、相反数从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值时它本身,若|a|=a,则a0;若|a|=-a,则a0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、 无限小数是有理数() 无限小
3、数是无理数()有理数是无限小数() 无理数是无限小数() 数轴上的点都可以用有理数表示() 有理数都可以由数轴上的点表示() 数轴上的点都可以用无理数表示() 无理数都可以由数轴上的点表示() 数轴上的点都可以用实数表示() 实数都可以由数轴上的点表示()三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“”。2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“”。正数和零的算术平方根都只有一个,零的算术平方根是零。 (0) ;注意的双重非负性:-
4、(0) 03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。考点四、科学记数法和近似数 (36分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。2、科学记数法把一个数写做的形式,其中,n是整数,这种记数法叫科学记数法。考点五、实数大小的比较 的几种方法 (3分)(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是
5、实数, (3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。考点六、实数的运算 (做题的基础,分值相当大)1、实数混合运算时,对于运算顺序有什么规定? 实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。 2、有理数除法运算法则就什么? 两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。 3、什么叫有理数的乘方?幂?底数?指数? 相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作: an 4、有理数乘方运算的法则是什么? 负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。 5、加括号和去括号时各项的符号的变化规律是什么? 去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
限制150内