人教版九年级上册数学 23.2.1中心对称2 教案.doc
《人教版九年级上册数学 23.2.1中心对称2 教案.doc》由会员分享,可在线阅读,更多相关《人教版九年级上册数学 23.2.1中心对称2 教案.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、23.2 中心对称(1) 教学内容 两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题 教学目标 了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题 复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180的特殊旋转中心对称的概念,并运用它解决一些实际问题 重难点、关键 1重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题 2难点与关键:从一般旋转中导入中心对称 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入 请同学们独立完成下题如图,ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,
2、并写出简要作法 老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向显然,逆时针或顺时针旋转都符合要求,一般我们选择小于180的旋转角为宜,故本题选择的旋转方向为顺时针方向;已知一对对应点和旋转中心,很容易确定旋转角如图,连结OA、OD,则AOD即为旋转角接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可 作法:(1)连结OA、OB、OC、OD; (2)分别以OB、OB为边作BOM=CON=AOD; (3)分别截取OE=OB,OF=OC; (4)依次连结DE、EF、FD;即:DEF就是
3、所求作的三角形,如图所示 二、探索新知 问题:作出如图的两个图形绕点O旋转180的图案,并回答下列的问题: 1以O为旋转中心,旋转180后两个图形是否重合?2各对称点绕O旋转180后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180都是重合的,即甲图与乙图重合,OAB与COD重合 像这样,把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心 这两个图形中的对应点叫做关于中心的对称点 例1如图,四边形ABCD绕D点旋转180,请作出旋转后的图案,写出作法并回答 (1)这两个图形是中心对称图形吗?如
4、果是对称中心是哪一点?如果不是,请说明理由(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点 分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心 (3)旋转后的对应点,便是中心的对称点 解:作法:(1)延长AD,并且使得DA=AD (2)同样可得:BD=BD,CD=CD(3)连结AB、BC、CD,则四边形ABCD为所求的四边形,如图23-44所示 答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点 (2)A、B、C、D关于中心D的对称点是A、B、C、D,这里的D与D重合例2如图,已知AD是ABC的中线,画出以点D为对称中心
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版九年级上册数学 23.2.1 中心对称2 教案 人教版 九年级 上册 数学 23.2 中心对称
限制150内