高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结.doc
《高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结.doc》由会员分享,可在线阅读,更多相关《高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考数学必胜秘诀在哪?概念、方法、题型、易误点及应试技巧总结十四、高考数学选择题的解题策略 数学选择题在当今高考试卷中,不但题目多,而且占分比例高,即使今年江苏试题的题量发生了一些变化,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选
2、择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在13分钟内解完,要避免“超时失分”现象的发生。高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确
3、的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为( )解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 故选A。例2、有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线l有且仅有一个平面与垂直;异面直线a、b不垂直,那么过a的任一个平面与b都不垂直。其中正确命题的个数为( )A0B1C2D3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D。例3、已知F1、F2是椭圆+=1的两焦点,
4、经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于( )A11B10C9D16解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|11,故选A。例4、已知在0,1上是的减函数,则a的取值范围是( )A(0,1)B(1,2)C(0,2)D2,+)解析:a0,y1=2-ax是减函数, 在0,1上是减函数。a1,且2-a0,1atancot(),则( )A(,)B(,0)C(0,)D(,)解析:因,取=代入sintancot,满足条件式,则排除A、C、D,故
5、选B。例6、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( )A24B84C72D36解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2S1=12,a3=a1+2d= 24,所以前3n项和为36,故选D。(2)特殊函数例7、如果奇函数f(x) 是3,7上是增函数且最小值为5,那么f(x)在区间7,3上是( )A.增函数且最小值为5B.减函数且最小值是5C.增函数且最大值为5D.减函数且最大值是5解析:构造特殊函数f(x)=x,虽然满足题设条件,并易知f(x)在区间7,3上是增函数,且最大值为f(-3)=-5,故选C。例
6、8、定义在R上的奇函数f(x)为减函数,设a+b0,给出下列不等式:f(a)f(a)0;f(b)f(b)0;f(a)+f(b)f(a)+f(b);f(a)+f(b)f(a)+f(b)。其中正确的不等式序号是( )ABCD解析:取f(x)= x,逐项检查可知正确。故选B。(3)特殊数列例9、已知等差数列满足,则有()A、B、C、D、解析:取满足题意的特殊数列,则,故选C。(4)特殊位置例10、过的焦点作直线交抛物线与两点,若与的长分别是,则 ( )A、 B、 C、 D、 解析:考虑特殊位置PQOP时,所以,故选C。例11、向高为的水瓶中注水,注满为止,如果注水量与水深的函数关系的图象如右图所示,
7、那么水瓶的形状是 ( )解析:取,由图象可知,此时注水量大于容器容积的,故选B。(5)特殊点例12、设函数,则其反函数的图像是( )A、B、C、D、解析:由函数,可令x=0,得y=2;令x=4,得y=4,则特殊点(2,0)及(4,4)都应在反函数f1(x)的图像上,观察得A、C。又因反函数f1(x)的定义域为,故选C。(6)特殊方程例13、双曲线b2x2a2y2=a2b2 (ab0)的渐近线夹角为,离心率为e,则cos等于( )AeBe2CD解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察。取双曲线方程为=1,易得离心率e=,cos=,故选C。(7)特殊模型例14、如
8、果实数x,y满足等式(x2)2+y2=3,那么的最大值是( )ABCD解析:题中可写成。联想数学模型:过两点的直线的斜率公式k=,可将问题看成圆(x2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。例15、已知、都是第二象限角,且coscos,则()AsinCtantanDcotcos找出、的终边位置关
9、系,再作出判断,得B。例16、已知、均为单位向量,它们的夹角为60,那么3|=()ABCD4解析:如图,3,在中,由余弦定理得3|=,故选C。例17、已知an是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是( )357OnA4B5C6D7解析:等差数列的前n项和Sn=n2+(a1-)n可表示为过原点的抛物线,又本题中a1=-91,排除B,C,D,故应选A。例21、原市话资费为每3分钟0.18元,现调整为前3分钟资费为0.22元,超过3分钟的,每分钟按0.11元计算,与调整前相比,一次通话提价的百分率( )A不会提高70% B会高于70%,但不会高于90%C不会低于10% D高
10、于30%,但低于100%解析:取x4,y100%8.3%,排除C、D;取x30,y 100%77.2%,排除A,故选B。例22、给定四条曲线:,,其中与直线仅有一个交点的曲线是( )A. B. C. D. 解析:分析选择支可知,四条曲线中有且只有一条曲线不符合要求,故可考虑找不符合条件的曲线从而筛选,而在四条曲线中是一个面积最大的椭圆,故可先看,显然直线和曲线是相交的,因为直线上的点在椭圆内,对照选项故选D。6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。(1)特征分析法根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推
11、理,迅速作出判断的方法,称为特征分析法。例23、如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传送信息,信息可以分开沿不同的路线同时传送,则单位时间内传递的最大信息量为( )A26B24C20D19解析:题设中数字所标最大通信量是限制条件,每一支要以最小值来计算,否则无法同时传送,则总数为3+4+6+6=19,故选D。例24、设球的半径为R, P、Q是球面上北纬600圈上的两点,这两点在纬度圈上的劣弧的长是,则这两点的球面距离是( )A、 B、 C、 D、解析:因纬线弧长球面距离直线距离,排除A、B、D,
12、故选C。例25、已知,则等于 ( ) A、 B、 C、 D、解析:由于受条件sin2+cos2=1的制约,故m为一确定的值,于是sin,cos的值应与m的值无关,进而推知tan的值与m无关,又,1,故选D。(2)逻辑分析法通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法。例26、设a,b是满足ab|ab|B|a+b|ab| C|ab|a|b|D|ab|a|+|b|解析:A,B是一对矛盾命题,故必有一真,从而排除错误支C,D。又由ab0,可令a=1,b= 1,代入知B为真,故选B。例27、的三边满足等式,则此三角形必是()A、以为斜边的直角三角形B、以为斜边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 必胜 秘诀 概念 方法 题型 误点 应试 技巧 总结
限制150内