初二数学上册知识点复习梳理归纳.doc





《初二数学上册知识点复习梳理归纳.doc》由会员分享,可在线阅读,更多相关《初二数学上册知识点复习梳理归纳.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初二数学上册知识点复习梳理归纳第十一章全等三角形知识要点一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。(3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三
2、角形全等。4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个三角形全等。(1)已知条件中有两角对应相等,可找:夹边相等(ASA)任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找夹角相等(SAS)第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找任一组角相等(
3、AAS 或 ASA)夹等角的另一组边相等(SAS)初二数学上册第十二章轴对称知识要点一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系 4.轴对称与轴对称图形的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
4、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等 3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 1.在平面直角坐标系中关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等;关于原点
5、对称的点横坐标和纵坐标互为相反数;与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_.点(x, y)关于y轴对称的点的坐标为_(-x, y)_.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)理解:已知等腰三角形的一线就可以推知另两线。2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角
6、对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。初二数学上册第十三章实数知识要点一、 实数的分类:正整数整数 零有理数 负整数 有限小数或无限循环小数 正分数分数 负分数 小数1.实数 正无理数无理数 无限不循环小数 负无理数2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可), 实数与数轴上的点是一一对应的。 数轴上任
7、一点对应的数总大于这个点左边的点对应的数。3、相反数与倒数;4、绝对值 5、近似数与有效数字;6、科学记数法7、平方根与算术平方根、立方根;8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。二、复习1. 无理数:无限不循环小数第十四章一次函数知识要点一.常量、变量: 在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 上册 知识点 复习 梳理 归纳

限制150内