高中数学 (1.1.2 弧度制)教案 新人教A版必修4.doc
《高中数学 (1.1.2 弧度制)教案 新人教A版必修4.doc》由会员分享,可在线阅读,更多相关《高中数学 (1.1.2 弧度制)教案 新人教A版必修4.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1.2 弧度制整体设计教学分析 在物理学和日常生活中,一个量常常需要用不同的方法进行度量,不同的度量方法可以满足我们不同的需要.现实生活中有许多计量单位,如度量长度可以用米、厘米、尺、码等不同的单位制,度量重量可以用千克、斤、吨、磅等不同的单位制,度量角的大小可以用度为单位进行度量,并且一度的角等于周角的,记作1. 通过类比引出弧度制,给出1弧度的定义,然后通过探究得到弧度数的绝对值公式,并得出角度和弧度的换算方法.在此基础上,通过具体的例子,巩固所学概念和公式,进一步认识引入弧度制的必要性.这样可以尽量自然地引入弧度制,并让学生在探究过程中,更好地形成弧度的概念,建立角的集合与实数集的一
2、一对应,为学习任意角的三角函数奠定基础. 通过探究讨论,关键弄清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但却是互相联系、辩证统一的.进一步加强对辩证统一思想的理解,渗透数学中普遍存在、相互联系、相互转化的观点.三维目标 1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制. 2.通过探究使学生认识到角度制和弧度制都是度量角的制度,通
3、过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣.重点难点 教学重点:理解弧度制的意义,并能进行角度和弧度的换算. 教学难点:弧度的概念及其与角度的关系.课时安排1课时教学过程导入新课 思路1.(类比导入)测量人的身高常用米、厘米为单位进行度量,这两种度量单位是怎样换算的?家庭购买水果常用千克、斤为单位进行度量,这两种度量单位是怎样换算的?度量角的大小除了以度为单位度量外,还可采用哪种度量角的单位制?它们是怎样换算的? 思路2.(情境导入)利用古代度量时间的一种仪器日晷,或者利用普遍使用的钟表.实际上我们使用的钟表是用时针、分针和
4、秒针角度的变化来确定时间的.无论采用哪一种方法,度量一个确定的量所得到的量数必须是唯一确定的.在初中,已学过利用角度来度量角的大小,现在来学习角的另一种度量方法弧度制.要使学生真正了解弧度制,首先要弄清1弧度的含义,并能进行弧度与角度换算的关键. 在引入弧度制后,可以引导学生建立弧与圆心角的联系弧的度数等于圆心角的度数.随着角的概念的推广,圆心角和弧的概念也随之推广:从“形”上说,圆心角有正角、零角、负角,相应的,弧也就有正弧、零弧、负弧;从“数”上讲,圆心角与弧的度数有正数、负数.圆心角和弧的正负实际上表示了“角的不同方向”,就像三角函数值的正负可以用三角函数线(有向线段)的方向来表示一样.
5、每一个圆心角都有一条弧与它对应,并且不同的圆心角对应着不同的弧,反之亦然.推进新课新知探究提出问题 问题:在初中几何里,我们学习过角的度量,1的角是怎样定义的呢? 问题:我们从度量长度和重量上知道,不同的单位制能给我们解决问题带来方便.那么角的度量是否也能用不同单位制呢?图1 活动:教师先让学生思考或讨论问题,并让学生回忆初中有关角度的知识,提出这是认识弧度制的关键,为更好地理解角度弧度的关系奠定基础.讨论后教师提问学生,并对回答好的学生及时表扬,对回答不准确的学生提示引导考虑问题的关键.教师板书弧度制的定义:规定长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度为单位来度量角的制度叫做弧
6、度制;在弧度制下,1弧度记作1 rad.如图1中,的长等于半径r,AB所对的圆心角AOB就是1弧度的角,即=1.讨论结果:1的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1.它是一个定值,与所取圆的半径大小无关.能,用弧度制.提出问题 问题:作半径不等的甲、乙两圆,在每个圆上作出等于其半径的弧长,连结圆心与弧的两个端点,得到两个角,将乙图移到甲图上,两个角有什么样的关系? 问题:如果一个半径为r的圆的圆心角所对的弧长是l,那么的弧度数是多少?既然角度制、弧度制都是角的度量制,那么它们之间如何换算? 活动:教师引导学生学会总结和归纳角度制和弧度制的关系,提问学生归纳的情况,让
7、学生找出区别和联系.教师给予补充和提示,对表现好的学生进行表扬,对回答不准确的学生提示和鼓励.引入弧度之后,应与角度进行对比,使学生明确:第一,弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;第二,1弧度是等于半径长的弧所对的圆心角(或这条弧)的大小,而1的角是周角的;第三,无论是以“弧度”还是以“度”为单位,角的大小都是一个与半径大小无关的定值.教师要强调为了让学生习惯使用弧度制,本教科书在后续的内容中尽量采用弧度制.讨论结果:完全重合,因为都是1弧度的角.=;将角度化为弧度:360=2 rad,1=rad0.017 45 rad,将弧度化为角度:2 rad
8、=360,1 rad=()57.30=5718.弧度制与角度制的换算公式:设一个角的弧度数为 rad=(),n=n(rad).提出问题 问题:引入弧度之后,在平面直角坐标系中,终边相同的角应该怎么用弧度来表示?扇形的面积与弧长公式用弧度怎么表示? 问题:填写下列的表格,找出某种规律.的长OB旋转的方向AOB的弧度数AOB的度数r逆时针方向2r逆时针方向R12r-2-0180360 活动:教师先给学生说明教科书上为什么设置这个“探究”?其意图是先根据所给图象对一些特殊角填表,然后概括出一般情况.教师让学生互动起来,讨论并总结出规律,提问学生的总结情况,让学生板书,教师对做正确的学生给予表扬,对没
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 1.1.2 弧度制教案 新人教A版必修4 1.1 弧度 教案 新人 必修
限制150内