高中数学诱导公式全集+高三英语作文套题万能公式+高考语文现代文规范答题模式.doc
《高中数学诱导公式全集+高三英语作文套题万能公式+高考语文现代文规范答题模式.doc》由会员分享,可在线阅读,更多相关《高中数学诱导公式全集+高三英语作文套题万能公式+高考语文现代文规范答题模式.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)sin (kZ)cos(2k)cos (kZ)tan(2k)tan (kZ)cot(2k)cot (kZ)公式二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式三:任意角与 -的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式五:利用公
2、式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)sincos(2)costan(2)tancot(2)cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。诱导公式记忆口诀规律总结上面这些诱导公式
3、可以概括为:对于/2*k (kZ)的三角函数值,当k是偶数时,得到的同名函数值,即函数名不改变;当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。(符号看象限)例如:sin(2)sin(4/2),k4为偶数,所以取sin。当是锐角时,2(270,360),sin(2)0,符号为“”。所以sin(2)sin上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360-所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。各种三角函数在四个象
4、限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“”;第二象限内只有正弦是“”,其余全部是“”;第三象限内切函数是“”,弦函数是“”;第四象限内只有余弦是“”,其余全部是“”上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型 第一象限 第二象限 第三象限 第四象限正弦 .余弦 .正切 .余切 .同角三角函数基本关系同角三角函数的基本关系式倒数关系:tan cot1sin csc1cos sec1商的关系:sin/costansec/csccos/sincotc
5、sc/sec平方关系:sin2()cos2()11tan2()sec2()1cot2()csc2()同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。两角和差公式两角和与差的三角函数公式sin()sincoscossinsin(
6、)sincoscossincos()coscossinsincos()coscossinsintan()(tan+tan)(1-tantan)tan()(tantan)(1tantan)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin22sincoscos2cos2()sin2()2cos2()112sin2()tan22tan/1tan2()半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin2(/2)(1cos)2cos2(/2)(1cos)2tan2(/2)(1cos)(1cos)另也有tan(/2)=(1cos)/sin=sin/(1+cos)万能公式万能公式sin=2
7、tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)/1-tan2(/2)万能公式推导附推导:sin2=2sincos=2sincos/(cos2()+sin2().*,(因为cos2()+sin2()=1)再把*分式上下同除cos2(),可得sin22tan/(1tan2()然后用/2代替即可。同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式三倍角的正弦、余弦和正切公式sin33sin4sin3()cos34cos3()3costan33tantan3()13tan2()三倍角公式推导附推导:tan3sin3/
8、cos3(sin2coscos2sin)/(cos2cos-sin2sin)(2sincos2()cos2()sinsin3()/(cos3()cossin2()2sin2()cos)上下同除以cos3(),得:tan3(3tantan3()/(1-3tan2()sin3sin(2)sin2coscos2sin2sincos2()(12sin2()sin2sin2sin3()sin2sin3()3sin4sin3()cos3cos(2)cos2cossin2sin(2cos2()1)cos2cossin2()2cos3()cos(2cos2cos3()4cos3()3cos即sin33sin4
9、sin3()cos34cos3()3cos三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角 减 3元(减完之后还有“余”)注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。另外的记忆方法:正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是3倍sin, 无指的是减号, 四指的是4倍, 立指的是sin立方余弦三倍角: 司令无山 与上同理和差化积公式三角函数的和差化积公式sinsin2sin()/2cos()/2sinsin2cos()/2sin()/2coscos2cos()/2co
10、s()/2coscos2sin()/2sin()/2积化和差公式三角函数的积化和差公式sin cos0.5sin()sin()cos sin0.5sin()sin()cos cos0.5cos()cos()sin sin0.5cos()cos()和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b)/2同理,若把两式相减,就得到cosa*sinb=(sin(a+
11、b)-sin(a-b)/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b)/2cosa*sinb=(sin(a+b)-sin(a-b)/2cosa*cosb=(cos(a+
12、b)+cos(a-b)/2sina*sinb=-(cos(a+b)-cos(a-b)/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin(x+y)/2)*cos(x-y)/2)sinx-siny=2cos(x+y)/2)*sin(x-y)/2)cosx+cosy=2cos(x+y)/2)*cos(x-y)/2)cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2)二、高考英语
13、作文套题万能公式:对比观点题型(1) 要求论述两个对立的观点并给出自己的看法。1 有一些人认为.2 另一些人认为.3 我的看法.The topic of -(主题)is becoming more and more popular recently. There are two sides of opinions about it. Some people say A is their favorite. They hold their view for the reason of -(支持A的理由一)What is more, -理由二). Moreover, -(理由三).While ot
14、hers think that B is a better choice in the following three reasons. Firstly,-(支持B的理由一). Secondly (besides),-(理由二). Thirdly (finally),-(理由三).From my point of view, I think -(我的观点). The reason is that -(原因). As a matter of fact, there are some other reasons to explain my choice. For me, the former is
15、 surely a wise choice .(2) 给出一个观点,要求考生反对这一观点Some people believe that -(观点一). For example, they think -(举例说明)And it will bring them -(为他们带来的好处). In my opinion, I never think this reason can be the point. For one thing,-(我不同意该看法的理由一). For another thing, -(反对的理由之二) Form all what I have said, I agree to
16、 the thought that -(我对文章所讨论主题的看法)阐述主题题型要求从一句话或一个主题出发,按照提纲的要求进行论述 阐述名言或主题所蕴涵的意义 分析并举例使其更充实The good old proverb -(名言或谚语)reminds us that -(释义). Indeed, we can learn many things form it.First of all,-(理由一). For example, -(举例说明). Secondly,-(理由二). Another case is that -(举例说明). Furthermore , -(理由三)In my op
17、inion, -(我的观点). In short, whatever you do, please remember the say-A. If you understand it and apply it to your study or work, you”ll necessarily benefit a lot from it.解决方法题型要求考生列举出解决问题的多种途径 问题现状 怎样解决(解决方案的优缺点) In recent days, we have to face I problem-A, which is becoming more and more serious. Fir
18、st, -(说明的现状)Second, -(举例进一步说明现状) Confronted with A, we should take a series of effective measures to cope with the situation. For one thing, -(解决方法一). For another -(解决方法二). Finally, -(解决方法三).Personally, I believe that -(我的解决方法). Consequently, Im confident that a bright future is awaiting us because
19、-(带来的好处).说明利弊题型这种题型往往要求先说明一下现状,再对比事物本身的利弊,有时也会单从一个角度(利或弊)出发,最后往往要求考生表明自己的态度(或对事物前景提出预测) 说明事物现状 事物本身的优缺点(或一方面) 你对现状(或前景)的看法Nowadays many people prefer A because it has a significant role in our daily life. Generally, its advantages can be seen as follows. First -(的优点之一). Besides -(的优点之二).But every co
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 诱导 公式 全集 英语 作文 万能 高考 语文 现代文 规范 答题 模式
限制150内