新人教版八年级数学上册教案.doc
《新人教版八年级数学上册教案.doc》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册教案.doc(166页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 八年级数学上册教案 教 学 目 录 2第11章 三角形(8)11.1 与三角形有关的线段(2)11.1.1 三角形的边 11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性信息技术应用 画图找规律11.2 与三角形有关的角(3) 11.2.1 三角形的内角 7.2.2 三角形的外角阅读与思考 为什么要证明11.3 多边形及其内角和(2)11.3.1 多边形 11.3.2 多边形的内角和数学活动复习小结(1)第12章 全等三角形(11)12.1 全等三角形(1)12.2 三角形全等的判定(6)信息技术应用 探究三角形全等的条件12.3 角的平分线的性质(2)数学活动复习小结(2)
2、第13章 轴对称(14)13.1 轴对称(3)13.1.1 轴对称 13.1.2 线段的垂直平分线的性质13.2 画轴对称图形(2)信息技术应用 用轴对称进行图案设计13.3 等腰三角形(5)13.3.1 等腰三角形 13.3.2 等边三角形实验与探究 三角形中边与角之间的不等关系13.4 课题学习 最短路径问题(2)数学活动复习小结(2)第14章 整式的乘法与因式分解(14)14.1整式的乘法(6)14.1.1 同底数幂的乘法 14.1.2 幂的乘方 14.1.3 积的乘方 14.1.4 整式的乘法14.2 乘法公式(3)14.2.1 平方差公式 14.2.2 完全平方公式阅读与思考 杨辉三
3、角14.3 因式分解(3)14.3.1 提公因式法 14.3.2 公式法阅读与思考 型式子的分解数学活动复习小结(2)第15章 分式(15)15.1 分式(4)15.1.1 从分数到分式 15.1.2 分式的基本性质15.2 分式的运算(6)15.2.1 分式的乘除 15.2.2 分式的加减 15.2.3 整数指数幂阅读与思考 容器中的水能倒完吗?15.3 分式方程(3)数学活动复习小结(2)第一课时 三角形的边一、新课导入1、三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2、对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?二、学习目标1、三角形的三边关系。2、
4、用三边关系判断三条线段能否组成三角形。三 、研读课本认真阅读课本的内容,完成以下练习。(一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。研读一、认真阅读课本(P63至P64“探究”前,时间:5分钟)要求:知道三角形的定义;会用符号表示三角形,了解按边角关系对三角形进行分类。一边阅读一边完成检测一。检测练习一、1、 的图形叫三角形。2、如图线段AB,BC,CA是三角形的 ,点A,B,C是三角形的 , A、 B、 C是 ,叫做 ,简称 。3、用符号语言表示上图的三角形。顶点是 的三角形,记作 ,读作: 。 4、按照三个内角的大小,可以将三角形分为5、三角形按边可分为研读二、
5、认真阅读课本( P64“探究”,时间:3分钟)要求:思考“探究”中的问题,理解三角形两边的和大于第三边;游戏:用棍子摆三角形。检测练习二、6、在三角形ABC中,AB+BC AC AC+BC AB AB+AC BC7、假设一只小虫从点B出发,沿三角形的边爬到点C,有 路线。路线 最近,根据是: ,于是有:(得出的结论) 。 8、下列下列长度的三条线段能否构成三角形,为什么?(1)3、4、8 (2)5、6、11 (3)5、6、10研读三、认真阅读课本认真看课本( P64例题,时间:5分钟)要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。(2)、对这例题的解法你还有哪些不理解的?
6、(3)、一边阅读例题一边完成检测练习三。检测练习三、9、一个等腰三角形的周长为28cm.已知腰长是底边长的3倍,求各边的长;已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!)解:(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?五、强化训练【A】组1、下列说法正确的是(1) 等边三角形是等腰三角形(2) 三角形按边分类课分为等腰三角形、等边三角形、不等边三角形(3) 三角形的两边之差大于第三边(4) 三角形按角分类应分锐角三角形、直角三角形、钝角三角形 其中正确的是( )A、1个 B、2个 C、3个 D、4个2
7、、一个不等边三角形有两边分别是3、5另一边可能是( )A、1 B、2 C、3 D、43、下列长度的各边能组成三角形的是( ) A、3cm、12cm、8cm B、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm【B】组4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少?【C】组(共小1-2题)6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是 。小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形.(1)
8、你能帮小方想出第三根游戏棒的长度吗?(长度为正整数)(2)想一想:如果已知两边,则构成三角形的第三边的条件是什么? (3)如果第三边的长为偶数,那么第三条又有几种情况?第二课时7.1.2 三角形的高、中线与角平分线(1)一、新课导入你还记得 “过直线外一点画已知直线的垂线”怎么画吗?二、学习目标1、了解三角形的高的概念;2、会用工具准确画出三角形的高。三 、研读课本认真阅读课本的内容,完成以下练习。(一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。1、 定义:从三角形的一个 向它的 所在的直线作 , 和 之间的线段,叫做三角形的高。图1ABCD2、几何语言(图1)AD是
9、ABC的高ADBC于点D(或 = =90)逆向:ADBC于点D(或 = =90)AD是ABC中BC边上的高3、请画出下列三角形的高 A A A(1)(2)(3) B C B C B C (三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?五、强化训练【A】组1、三角形的高是( )A直线 B射线 C线段 D垂线2、如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( )A锐角三角形 B直角三角形 C钝角三角形 D不能确定3、对于任意三角形的高,下列说法不正确的是( )A锐角三角形有三条高 B直角三角形只有一
10、条高C任意三角形都有三条高 D钝角三角形有两条高在三角形的外部【B】组4、如图1,ABC中,高CD、BE、AF相交于点O,则BOC的三条高分别为线段_ _5、如图2,在ABC中,ACB=900,CD是边AB上的高。与A相等的角是( ) A.A B.ACD C.BCD D.BDC C A B D图1 图2【C】组6、如右图,在锐角ABC中,CD、BE分别是AB、AC上的高,且CD、BE交于一点P,若A=50,则BPC的度数是( ) A150 B130 C120 D1007、如图,在ABC中,AC=6,BC=8,ADBC于D,AD=5, BEAC于E,求BEA DECB的长第三课时 三角形的高、中
11、线与角平分线(2)一、新课导入请画出线段AB的中点。二、学习目标1、了解三角形的中线的概念;2、会用工具准确画出三角形的中线。三 、研读课本认真阅读课本的内容,完成以下练习。(一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。(1)定义:连结三角形一个 和它对边 的线段,叫做三角形的中线。ABCD(2)几何语言(右图) AD是ABC的中线 = 逆向: = AD是ABC的中线(3)画出下列三角形的中线 (1)(2)(3) (三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?五、强化训练【A】组1、三角形的三
12、条三条中线交于 。2、三角形的中线是( )ABCDEA直线 B射线 C线段 D垂线3、如右图, 则BD的长为( ) A. 2 B. 3 C. 4 D. 6 【B】组4、如右图,D、E是AC的三等分点,BD是 中的 边上的中线,BE是 中的 边上的中线 B D E C 5、如右图,BD=BC,则BC边上的中线为_, 的面积=_ _的面积【C】组6、如图3,AD是ABC的边BC上的中线,已知AB=5cm,AC=3cm,求ABD与ACD的周长之差第四课时 三角形的高、中线与角平分线(3)一、新课导入请画出AOB的角平分线。 二、学习目标1、了解三角形的角平分线的概念;2、会用工具准确画出三角形的角平
13、分线。三 、研读课本认真阅读课本的内容,完成以下练习。(一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。(1)定义:三角形一个内角的 与它的 相交,这个角 与 之间的线段,叫做三角形的角平分线。(2)几何语言(右图):图3ABCD12 AD是ABC的角平分线 = 逆向: = AD是ABC的角平分线(3)画出下列三角形的角平分线 (1)(2)(3)思考:三角形的角平分线与一个角的角平分线有何异同?(三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?五、强化训练【A】组1、三角形的角平分线是( )A直线 B
14、射线 C线段 D垂线2、如图。在 ABC中, AD是角平分线,AE是中线,AF是高,则(1)BE = = . A(2)BAD = = (3)AFB = = 90 B E D F C(4)ABC的面积 = . 3、如右图,在ABC中,AD平分BAC且与BC相交于点D,B=400,BAD=300,则C的度数是 ;【B】组4以下说法错误的是( ) A三角形的三条高一定在三角形内部交于一点 B三角形的三条中线一定在三角形内部交于一点 C三角形的三条角平分线一定在三角形内部交于一点 D三角形的三条高可能相交于外部一点5如图,在ABC中,AE是角平分线,且B=52,C=78,求AEB的度数【C】组6直角三
15、角形两锐角的平分线所夹的钝角为_度.7、如图,在ABC中,AD是ABC的高,AE是ABC的角平分线,已知BAC=820,C=400,求DAE的大小。分析:你能先求出AED的度数吗?第五课时 713三角形的稳定性一、新课导入盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条(如右图),为什么这样做呢?二、学习目标1、了解三角形的稳定性,四边形没有稳定性,2、理解稳定性与没有稳定性在生产、生活中广泛应用。三 、研读课本认真阅读课本的内容,完成以下练习。(一)划出你认为重点的语句。 (二)完成下面练习,并体验知识点的形成过程。活动1、自主探究1、如图(1),用三根木条用钉子钉成一个三角
16、形木架,然后扭动它,它的形状会改变吗?2、如图(2),用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、如图(3),在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(2)活动2、议一议从上面实验过程你能得出什么结论?与同伴交流。三角形木架形状 改变,四边形木架形状 改变,这就是说,三角形具有 性,四边形不具有 性。斜钉一根木条的四边形木架的形状 改变,原因是四边形变成了两个三角形,这样就利用了三角形的 。活动3、看一看,想一想三角形的稳定性和四角形的不稳定性在生活中都有广泛应用。你知道课本图7.1-8和图7.1-9中的例子哪些是利用三角形
17、的稳定性?哪些是利用四角形的不稳定性?你能再举一些例子吗? (三)在研读的过程中,你认为有哪些不懂的问题?四、归纳小结 (一)这节课我们学到了什么? (二)你认为应该注意什么问题?五、强化训练【A】组1、下列图形中具有稳定性的有 (1) (2) (3) (4) (5) (6)2、在建筑工地我们常可看见如右图所示,用木条EF固定矩形门框ABCD的情形.这种做法根据( )A.两点之间线段最短 B.两点确定一条直线C.三角形的稳定性 D.垂线段最短3、下列图形具有稳定性的有( )A.梯形 B. 长方形 C. 直角三角形 D. 正方形【B】组4、如右图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 教案
限制150内