平移型“将军饮马”问题解法大全-6页文档资料.doc
《平移型“将军饮马”问题解法大全-6页文档资料.doc》由会员分享,可在线阅读,更多相关《平移型“将军饮马”问题解法大全-6页文档资料.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流平移型“将军饮马”问题解法大全【精品文档】第 6 页平移型“将军饮马”问题解法大全如下图,大家都熟悉求两条线段和最短的“将军饮马”模型,就是通过对称把同侧两定点转化为异侧两定点,再利用两点之间线段最短,找到我们要得的动点,进而求出最短距离。在直线l上找一动点P,使得PA+PB之和最短,就是我们熟知的“将军饮马”模型,即(“两定一动型”-两个定点+一个动点)。如果本题拓展为在直线l上找两个动点P、Q(PQ两动点间距离为定值),使得AP+PQ+BQ的距离之和最短,又该如何处理呢?(“两动一定型”)法一:先对称后平移作定点A关于动点所在直线(河)的对称点A,将
2、点A沿直线平移PQ的长度得A”,连接A”B,则交直线(河)于点Q,将点Q沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.思路:作对称(同侧变异侧)-对称点平移定长线段(“一定两动”化“两定一动”)-连接两定点-动点反向平移定长线段-连接所得点.法二:先平移后对称将点A沿直线平移PQ的长度得A,作定点A关于动点所在直线(河)的对称点A”,连接A”B,则交直线(河)于点Q,将点Q沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.思路:定点平移定长线段(“一定两动”化“两定一动”)-作对称(同侧变异侧)-连接两定点-动点反向平移定长线段-连接所得点.作图模型:对称+平移+连接+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平移 将军 饮马 问题 解法 大全 文档 资料
限制150内