《弯矩图100新编解答ppt课件.ppt》由会员分享,可在线阅读,更多相关《弯矩图100新编解答ppt课件.ppt(72页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(1)P作用下的M图:qL2q作用下的M图:221qL223qLP与q作用下的M图:(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2P
2、PLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(2)P作用下的M图:qL2q作用下的M图:221qLP与q作用下的M图:221qL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(3)P作用下的M图:q作用下的M图:221qL24qL25 . 4 qLP与q作用下的M图:直线与曲线相切22qL(15)(14)(13)(12)(
3、11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(15)(14)(13)(12)(11)(10
4、)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(4)(5)(6)从右向左作M图:PLPL从右向左作M图:223qL225qL221qL281qL从右向左作M图:PLPL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLL
5、qLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLP
6、P=2qLLqLPL2PLPLLL/22M=qLqL(7)(8)(9)利用对称性作M图:221qL221qL281qL利用反对称性作M图:M21M21先计算支反力,再作M图:qL41241qL281qL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(15)(14)(13)(12)(11)(10)(9)(8)(7)(6)(5)(4)(3)(2)(1)一
7、、梁L/2L/4L/4qLqLqL2M=qLP=qLLqLqLP=qLM=PL2PLLqLP=qLMLLqLLLL2PPLLLqLPLLPP=2qLLqLPL2PLPLLL/22M=qLqL(10)(11)(12)叠加法作M图:1.先考虑力偶作用PL2PL2.再叠加P的作用PL41先计算支反力,再作M图:P34P35PL34PL35先计算支反力,再作M图:kN4 . 1kN6 . 04 . 26 . 11 . 06 . 1(13)(14)(15)作M图,只需计算C截面弯矩Fl21作M图,只需计算C截面弯矩221qa曲线在B点与水平线相切281qa不用计算支反力,可快速作M图3030(16)(1
8、7)(18)先计算支反力,再作M图:F31FaFa31直接作M图:2qa289qa直接作M图:601020(19)(20)(21)CD段直接作M图,AC段采用叠加法:2qa221qa相切力偶只影响BD段,直接用叠加法作M图:2qa2qa力偶只影响BC段,力只影响AC段,作M图:22qa2qa不与水平线相切aaaaaaam(22)从附属部分开始,直接作M图:mmmmqLL(22)(21)(20)(19)二、悬臂式刚架(18)(17)(16)PPLLL/2L/2L/2L/2030PLL2M=qaP=qaP=2qaqq4a2aaa2a2aa3aM=2qaqa2aa2m2m2m1560q=102mM=
9、PL(23)从附属部分开始,用“局部悬臂梁法”直接作M图:2481aq24qa相切28qa216qa215qa25 . 8 qa2381aq(24)(25)(26)22qL8qL222qLqL2482qL2qL8PL42qL2qL /8LqM=qL2L/2LLP2PLPLLqLP=2qLPLLPLqLLLP2PLLLLqLLMP=qLLqLL2PM=PLP=qLLqLqLP=qLM=qL2LqLqLqL/4L/4L/2一、梁(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)2PL9qL22PL34pL5pL3qL22M2qL2qL22+pLp
10、L22qL225qL3qL2222qLqL2882qL5qL2323225qL8qL2斜梁各截面弯矩值与所对应简支梁一样,作M图:所对应简支梁为:22qL8qL222qLqL2482qL2qL8PL42qL2qL /8LqM=qL2L/2LLP2PLPLLqLP=2qLPLLPLqLLLP2PLLLLqLLMP=qLLqLL2PM=PLP=qLLqLqLP=qLM=qL2LqLqLqL/4L/4L/2一、梁(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)2PL9qL22PL34pL5pL3qL22M2qL2qL22+pLpL22qL225q
11、L3qL2222qLqL2882qL5qL2323225qL8qL2(27)(28)qL22(22)Lq2217qa215qa216qa8qa224qa2qa2PL2PL23qaqa222055530(21)(20)(19)二、悬臂式刚架(18)(16)PPLLL/2L/2L/2L/2030PLM=PLL2M=qaP=qaP=2qaqq4a2aaa2a2aa3aM=2qaq2m2m2m1560q=102mPLPL22PL23PL3PL3PL22PL9qa28a2aa228qa(17)用“局部悬臂梁法”直接作M图,P力通过截面以上部分还有力偶,所以弯矩不为0:用“局部悬臂梁法”直接作M图,P力通
12、过截面弯矩为0(29)(30)qL22(22)Lq2217qa215qa216qa8qa224qa2qa2PL2PL23qaqa222055530(21)(20)(19)二、悬臂式刚架(18)(16)PPLLL/2L/2L/2L/2030PLM=PLL2M=qaP=qaP=2qaqq4a2aaa2a2aa3aM=2qaq2m2m2m1560q=102mPLPL22PL23PL3PL3PL22PL9qa28a2aa228qa(17)与杆件轴线相切用“局部悬臂梁法”直接作M图,P力通过截面弯矩为0用“局部悬臂梁法”直接作M图(31)(32)用“局部悬臂梁法”直接作M图:Pl21注:P力通过点弯矩为
13、0Pl21Pl21PlPl2Pl2Pl注:P力通过点弯矩为0用“局部悬臂梁法”直接作M图:(33)(34)(28)(27)(26)(25)(24)(23)qq2aaaa/2qqaa/2aqqaaaPL2LLLLP2LLLPPaaa2PLqa2PaPaPa2AB注:AB段弯矩为常数。(28)(27)(26)(25)(24)(23)qq2aaaa/2qqaa/2aqqaaaPL2LLLLP2LLLPPaaa2PLqa2PLPLPL3用“局部悬臂梁法”直接作M图:用“局部悬臂梁法”直接作M图:(35)(36)(28)(27)(26)(25)(24)(23)qq2aaaa/2qqaa/2aqqaaaP
14、L2LLLLP2LLLPPaaa2PLqa2PL2PLPL3(28)(27)(26)(25)(24)(23)qq2aaaa/2qqaa/2aqqaaaPL2LLLLP2LLLPPaaa2PLqa22qa221qa281qa(37)(38)(28)(27)(26)(25)(24)(23)qq2aaaa/2qqaa/2aqqaaaPL2LLLLP2LLLPPaaa2PLqa22qa2qa221qa与杆件轴线相切(28)(27)(26)(25)(24)(23)qq2aaaa/2qqaa/2aqqaaaPL2LLLLP2LLLPPaaa2PLqa2221qa221qa2qa2m2m2m(34)(33)
15、(32)(31)(30)(29)qqaaaaaLqLL/2L/2qL3m30kN20kN/m3m3m3m40kN10kN/mP=40kN2m2m2maPaa8010060100(39)(40)22qaqa222qa2cos2qL2+2qL22cosqL2qL2222qL90901008060100100PaPa2m2m2m(34)(33)(32)(31)(30)(29)qqaaaaaLqLL/2L/2qL3m30kN20kN/m3m3m3m40kN10kN/mP=40kN2m2m2maPaa(41)(42)22qaqa222qa2cos2qL2+2qL22cosqL2qL2222qL90901
16、008060100100PaPa2m2m2m(34)(33)(32)(31)(30)(29)qqaaaaaLqLL/2L/2qL3m30kN20kN/m3m3m3m40kN10kN/mP=40kN2m2m2maPaa3315(43)(44)415qa221qa2822qa22qaqa2qa22qa2qa2PLPLPa22Pa2PaPa(40)(39)(38)(37)L(36)(35)三、简支式刚架aaqq2aqa2a2qaa2qaqaaqq/2a/2qaaaa/2PLPPaaa/2a2Pa2Paqa227qa4(45)(46)(47)支座B无反力,AB段无变形2m2m2m(34)(33)(32
17、)(31)(30)(29)qqaaaaaLqLL/2L/2qL3m30kN20kN/m3m3m3m40kN10kN/mP=40kN2m2m2maPaaBAPaPa180180不用计算支反力,直接作M图AB计算A支座水平反力,即可作M图155 .2284515(48)(49)415qa221qa2822qa22qaqa2qa22qa2qa2PLPLPa22Pa2PaPa(40)(39)(38)(37)L(36)(35)三、简支式刚架aaqq2aqa2a2qaa2qaqaaqq/2a/2qaaaa/2PLPPaaa/2a2Pa2Paqa227qa4计算A支座水平反力,即可作M图ABABA、B支座无
18、水平反力,直接作M图(51)(50)415qa221qa2822qa22qaqa2qa22qa2qa2PLPLPa22Pa2PaPa(40)(39)(38)(37)L(36)(35)三、简支式刚架aaqq2aqa2a2qaa2qaqaaqq/2a/2qaaaa/2PLPPaaa/2a2Pa2Paqa227qa4无水平支反力,直接作M图无水平支反力,直接作M图(52)(53)(46)2.595q7qL24qL24223qL345453904806906904Pa334Pa4Pa2qa225qaqa22qa22qa22(45)(44)(43)(42)(41)3m4m4mqqLqLLL40kN10k
19、N/m3m3m3m3m3m4Paaaa2aqaqaa2a2M=qaqa/2a/2a3qa22先计算A支座水平支反力,再作M图ABAB先计算B支座水平支反力,再作M图(54)(55)(46)2.595q7qL24qL24223qL345453904806906904Pa334Pa4Pa2qa225qaqa22qa22qa22(45)(44)(43)(42)(41)3m4m4mqqLqLLL40kN10kN/m3m3m3m3m3m4Paaaa2aqaqaa2a2M=qaqa/2a/2a3qa22先计算支反力,再作M图先计算支反力,再作M图(57)(56)(46)2.595q7qL24qL24223
20、qL345453904806906904Pa334Pa4Pa2qa225qaqa22qa22qa22(45)(44)(43)(42)(41)3m4m4mqqLqLLL40kN10kN/m3m3m3m3m3m4Paaaa2aqaqaa2a2M=qaqa/2a/2a3qa22先计算支反力,再作M图先计算支反力,再作M图MM2Pa2PP2无弯矩N=P/222qL2qL2PLPL2qLqL22(52)(53)(50)(51)(48)(47)aaaaMaa2aPPLLL1.5LLLLqLPPL2LLqLLMPa2先计算支反力,再作M图无支反力,直接作M图(58)(59)(60)(61)MM2Pa2PP2
21、无弯矩N=P/222qL2qL2PLPL2qLqL22(52)(53)(50)(51)(48)(47)aaaaMaa2aPPLLL1.5LLLLqLPPL2LLqLLMPa2AA处无支反力,直接作M图利用反对称性,直接作M图105105105105(62)(63)先计算A或B处支反力,再作M图AB、CD段没有弯曲变形,直接作M图MM2Pa2PP2无弯矩N=P/222qL2qL2PLPL2qLqL22(52)(53)(50)(51)(48)(47)aaaaMaa2aPPLLL1.5LLLLqLPPL2LLqLLMPa2ABABCDAPLMM/2M/2M/225kN.m25kN.mPa/25qa/
22、29qa/2(58)(57)(56)(55)(54)LL/2L/2PL/2L/2LML/2q=20kN/m50kN50kN0.5m0.5m2m4m4ma/2a/2Pa/2a/2a3a3a2aqqa2qaPa/265kN.m25kN.m25kN.mPLPLPL四、三铰式刚架AAB以B为矩心,计算A处水平支反力,再作M图计算A处支反力为0,直接作M图(64)(65)(66)(67)MM2Pa2PP2无弯矩N=P/222qL2qL2PLPL2qLqL22(52)(53)(50)(51)(48)(47)aaaaMaa2aPPLLL1.5LLLLqLPPL2LLqLLMPa2PLMM/2M/2M/225
23、kN.m25kN.mPa/25qa/29qa/2(58)(57)(56)(55)(54)LL/2L/2PL/2L/2LML/2q=20kN/m50kN50kN0.5m0.5m2m4m4ma/2a/2Pa/2a/2a3a3a2aqqa2qaPa/265kN.m25kN.m25kN.mPLPLPL四、三铰式刚架B、A处无水平支反力,直接作M图AABB、A处无水平支反力,AC、DB无弯曲变形,EC、ED也无弯曲变形ABCDEA图。支座水平反力,即可作计算出段弯矩为常数。点为直线,弯矩图过向相反;支座反力大小相等,方、特点:MADECBA图。即可作支座水平反力,或。计算出处弯矩为图对称,荷载,特点:对
24、称结构,对称MBACM0PLMM/2M/2M/225kN.m25kN.mPa/25qa/29qa/2(58)(57)(56)(55)(54)LL/2L/2PL/2L/2LML/2q=20kN/m50kN50kN0.5m0.5m2m4m4ma/2a/2Pa/2a/2a3a3a2aqqa2qaPa/265kN.m25kN.m25kN.mPLPLPL四、三铰式刚架(68)(69)ABCDEABCPL41PL41A图。支座水平反力,即可作计算出形。为二力折杆,有弯曲变形;为二力杆,没有弯曲变特点:MBCBAC22qa/32qa2qa/2PL(65)(64)(63)(62)(61)(60)(59)qaa
25、aaq1.5aaaM1.5aaaq1.5aaaaa1.5aq2aaaPLLqa/22qa/222qa/2MMMMqa2qa2/8MMMM/82qaqa2/82qa/322qa/3222qa/3qa/22PL2MMMqa(70)(71)ABABC图。即可作支座水平反力,或。计算出处弯矩为图对称,荷载,特点:对称结构,对称MBACM0CA22qa/32qa2qa/2PL(65)(64)(63)(62)(61)(60)(59)qaaaaq1.5aaaM1.5aaaq1.5aaaaa1.5aq2aaaPLLqa/22qa/222qa/2MMMMqa2qa2/8MMMM/82qaqa2/82qa/322
26、qa/3222qa/3qa/22PL2MMMqa(72)(73)ABCABC图。即可直接作。处弯矩为。也反对称,称荷载,反力特点:对称结构,反对MCXXBA00图。即可直接作处弯矩为。,列平衡方程计算得力很重要,特点:计算支座水平反MCXXAB000图。,即可直接作弯矩为、。弯矩图对称。也对称,荷载,反力特点:对称结构,对称MBAYC00图。,即可直接作弯矩为处、弯矩图对称。荷载,特点:对称结构,对称MCBA022qa/32qa2qa/2PL(65)(64)(63)(62)(61)(60)(59)qaaaaq1.5aaaM1.5aaaq1.5aaaaa1.5aq2aaaPLLqa/22qa/2
27、22qa/2MMMMqa2qa2/8MMMM/82qaqa2/82qa/322qa/3222qa/3qa/22PL2MMMqaABCABC(74)(75)22qa/32qa2qa/2PL(65)(64)(63)(62)(61)(60)(59)qaaaaq1.5aaaM1.5aaaq1.5aaaaa1.5aq2aaaPLLqa/22qa/222qa/2MMMMqa2qa2/8MMMM/82qaqa2/82qa/322qa/3222qa/3qa/22PL2MMMqa(76)ABC图。,即可直接作弯矩为,计算出方程,为矩心,列写力矩平衡。以征得为二力折杆,由几何特特点:MCXAXYCBBBB0(77
28、)(78)M/43M/4M/2M/2M/2M/236kN.m36kN.m2q2q对称23qa/82qa/82qa/2100kN.m200kN.m300kN.m300kN.m3m1.5m1.5m(71)(70)(69)(68)(67)(66)aaaaL/2L/2L/2L/23m2m3m12kN2mq2q2m2m2m2mqa/2a/2a2aa1.5m5m3m60kN100kN.mqa/22qa/823qa/82M/2M/2M/2qq2q2qABCABC图。即可直接作的水平反力,或,计算出弯矩为、。弯矩图对称。也对称,荷载,反力特点:对称结构,对称MBABAYC00图。即可直接作的水平反力,或计算出
29、,弯矩为、特点:MBACBA0830031003100A(80)(79)M/43M/4M/2M/2M/2M/236kN.m36kN.m2q2q对称23qa/82qa/82qa/2100kN.m200kN.m300kN.m300kN.m3m1.5m1.5m(71)(70)(69)(68)(67)(66)aaaaL/2L/2L/2L/23m2m3m12kN2mq2q2m2m2m2mqa/2a/2a2aa1.5m5m3m60kN100kN.mqa/22qa/823qa/82M/2M/2M/2qq2q2qABCABC图。即可直接作的水平反力,、计算出,弯矩为、特点:MBACBA0图。即可直接作的水平反
30、力,、计算出,弯矩为、特点:MBACBA0图。即可直接作,弯矩为、,计算出方程,为矩心,列写力矩平衡。以征得为二力折杆,由几何特特点:MCBAXAXYCBBBB0(82)(81)M/43M/4M/2M/2M/2M/236kN.m36kN.m2q2q对称23qa/82qa/82qa/2100kN.m200kN.m300kN.m300kN.m3m1.5m1.5m(71)(70)(69)(68)(67)(66)aaaaL/2L/2L/2L/23m2m3m12kN2mq2q2m2m2m2mqa/2a/2a2aa1.5m5m3m60kN100kN.mqa/22qa/823qa/82M/2M/2M/2qq
31、2q2qABCABCM图。即可直接作,弯矩为、,计算出方程,为矩心,列写力矩平衡。以征得为二力折杆,由几何特特点:MCBAXAXYCBBBB02(84)(83)2qa22qa2qa2qL/2PaPa/4Pa/4(77)(76)(75)(74)(73)(72)五、复杂刚架qa2a2aqa/2aaaqL/2L/2L/2qLLLLaaaPaPPa/2a/2aaPaPaqL/822qL/322qa/8qa/222qaqa2ABCDEABCDEE图。即可直接作段没有弯曲变形,、形,为二力杆,没有弯曲变。弯矩图对称。也对称,荷载,反力特点:对称结构,对称MCEDCABYC0图。即可直接作水平反力,内力、支
32、座计算出段没有弯曲变形。形,为二力杆,没有弯曲变特点:MDABBEAB图。即可直接作为斜梁。没有弯曲变形,为二力杆,、特点:MACBCABE2qa22qa2qa2qL/2PaPa/4Pa/4(77)(76)(75)(74)(73)(72)五、复杂刚架qa2a2aqa/2aaaqL/2L/2L/2qLLLLaaaPaPPa/2a/2aaPaPaqL/822qL/322qa/8qa/222qaqa2(85)(86)ABCABC图。即可直接作杆如同简支梁。,处弯矩为、特点:MACCBA02qa22qa2qa2qL/2PaPa/4Pa/4(77)(76)(75)(74)(73)(72)五、复杂刚架qa
33、2a2aqa/2aaaqL/2L/2L/2qLLLLaaaPaPPa/2a/2aaPaPaqL/822qL/322qa/8qa/222qaqa2E(87)(88)ABCDEABCD。处弯矩为、为二力杆,为悬臂刚架,基本部分为外伸梁,附属部分,特点:0CAACCDEAB相切,弯矩图在处弯矩为、。为悬臂刚架,基本部分为简支梁,附属部分,特点:BBABCDAB0E三处反力是必须的。、。计算处弯矩为、为悬臂刚架,基本部分为二力杆,附属部分,、特点:DBABAABDBCAC0,2qa /82qaPa/2Pa/2Pa/2Pa/2PaaaaaPaaaaqqaa2a2aaqaqaaaaaP2kNq=10kN/
34、m2m2m2m2m4m4m(78)(79)(80)(81)(82)Pa/2Pa/2对称qa222qa2qa/23qa24Pa6Pa4P-8Pa12kN.m4kN.m8kN.m80kN.m24kN.m56kN.m(89)(90)2qa /82qaPa/2Pa/2Pa/2Pa/2PaaaaaPaaaaqqaa2a2aaqaqaaaaaP2kNq=10kN/m2m2m2m2m4m4m(78)(79)(80)(81)(82)Pa/2Pa/2对称qa222qa2qa/23qa24Pa6Pa4P-8Pa12kN.m4kN.m8kN.m80kN.m24kN.m56kN.mABCDABCDE四处反力是必须的。
35、、。计算处弯矩为、为基本部分为附属部分,特点:ECBAECBAABCDBE0,。处弯矩为、悬臂梁为基本部分为二力杆,梁,杆为附属部分,为简支特点:0,CBACDBCAB2qa /82qaPa/2Pa/2Pa/2Pa/2PaaaaaPaaaaqqaa2a2aaqaqaaaaaP2kNq=10kN/m2m2m2m2m4m4m(78)(79)(80)(81)(82)Pa/2Pa/2对称qa222qa2qa/23qa24Pa6Pa4P-8Pa12kN.m4kN.m8kN.m80kN.m24kN.m56kN.m(92)(91)ABCDABCDEF。处弯矩为、荷载的简支梁,为中间有集中。再计算先计算,为二
36、力杆,容易判断、特点:0,0FBAFBXXYCDEFABB可直接作弯矩图。处弯矩为为外伸梁,为外伸斜梁,为二力杆,特点:0CCBACAB为矩心列方程。以和分别取水平反力即可。、的简支梁,计算布荷载为中间受集中荷载和分支梁,为中间受集中荷载的简图。为简支梁,直接作弯矩为二力杆,、特点:C,CEFBADBABEADCFCEDEPa4PaPa2Pa2qa2qa/22qa/4220kN.m8kN.m(86)(85)(83)2m2m2aaaaaa2aPqa/2aqaaa/210kN1mq=4kN/m1m2m2m21.82kN.m21.82kN.m(84)5kN5kN5kN4X3m=12m3m8m-3.5
37、36kN2.27kN2.27kN-5kN-10kN10.61kN2.27kN2.27kN-5kN10.61kN-3.536kN-10kNPa4PaPa2Pa2qa2qa/22qa/4220kN.m8kN.m(86)(85)(83)2m2m2aaaaaa2aPqa/2aqaaa/210kN1mq=4kN/m1m2m2m21.82kN.m21.82kN.m(84)5kN5kN5kN4X3m=12m3m8m-3.536kN2.27kN2.27kN-5kN-10kN10.61kN2.27kN2.27kN-5kN10.61kN-3.536kN-10kN(94)(93)ABCABCDEFPa4PaPa2P
38、a2qa2qa/22qa/4220kN.m8kN.m(86)(85)(83)2m2m2aaaaaa2aPqa/2aqaaa/210kN1mq=4kN/m1m2m2m21.82kN.m21.82kN.m(84)5kN5kN5kN4X3m=12m3m8m-3.536kN2.27kN2.27kN-5kN-10kN10.61kN2.27kN2.27kN-5kN10.61kN-3.536kN-10kN(95)ABCDE部分弯矩图。可进一步作,点。容易判断一直到点开始直接作弯矩图,附属部分,从为基本部分,其它都为特点:ABPYPXBEABBB,P/2PPP/280kN.mP3P80kN.m100kN.m6
39、0kN.m30kN.m70kN.m10kN.m40kN.m30kN.m2m2m2m2m2m2m2m2m2m2m(90)(89)(88)(87)P2m2m2m2m1.5m20kN/m40kN2m2m4m4m22PP2m4m4m2m10kN/mm40kN20kN20kN10kN/m10kN/m10kN/m20kN.m20kN.m40kN.m80kN.m80kN.m2P(96)ABCDEFG力都是必不可少的。算各处支反部分开始作弯矩图,计部分,从处集中力作用在复杂刚架。以此增加二元体,完成三铰刚架为基本部分,特点:FGDEFFABC90kNm50kNm70kNm110kNm(97)(98)P/2PP
40、P/280kN.mP3P80kN.m100kN.m60kN.m30kN.m70kN.m10kN.m40kN.m30kN.m2m2m2m2m2m2m2m2m2m2m(90)(89)(88)(87)P2m2m2m2m1.5m20kN/m40kN2m2m4m4m22PP2m4m4m2m10kN/mm40kN20kN20kN10kN/m10kN/m10kN/m20kN.m20kN.m40kN.m80kN.m80kN.m2PABCDE弯矩图。考虑为简支梁,直接作点。到出发作弯矩图,可一直从然简支梁为附属部分,显三铰刚架为基本部分,特点:DEACXBCABDEB0ABCDE即可。再计算出、可计算出为矩心部
41、分,以考虑容易判断为二力杆,、为基本部分,特点:BEEEEXXYCCDEXYDECDAB,22图可顺利作出。变形,。只有中间矩形有弯曲处弯矩为、处只有水平反力,去掉不影响计算,也为二元体,、为二元体,、处反力都为、特点:容易判断MKHKIEEFCGCDBA0, 0图。,即可作和可计算出为矩心,列写方程。杆,以考虑为矩心,列写方程;杆,以考虑为二力杆、特点:MYXHBCGABEFDEBB,(99)(100)P/2PPP/280kN.mP3P80kN.m100kN.m60kN.m30kN.m70kN.m10kN.m40kN.m30kN.m2m2m2m2m2m2m2m2m2m2m(90)(89)(8
42、8)(87)P2m2m2m2m1.5m20kN/m40kN2m2m4m4m22PP2m4m4m2m10kN/mm40kN20kN20kN10kN/m10kN/m10kN/m20kN.m20kN.m40kN.m80kN.m80kN.m2PMPa/2Pa/2Pa/2Pa/2Pa/2Pa/24P4PPL/22qL/223qL/2(95)(94)(93)(92)(91)aaaaaaaaPaaaaaP2m4m4m2m4m030030PPL/2L/2LLqLLLMMM4P4P4P4P4PPL/2MABCDEFGHIJKABCDEFGHP21P21P21P21Pa21Pa21P21P21P21P21P21P
43、21无弯曲变形部分无需计算反力。即段当然也无弯曲变形。杆无弯曲变形弯矩图对称,容易判断逐段绘制弯矩图。结构法,力,再按照局部悬臂梁特点:应先计算支座反ABCDECE,ADBC,ABABCDE5 . 75 . 711301130kNm11240kNm1124055101061.1061.1054. 354. 3228. 0228. 0228. 0228. 0弯矩、轴力对称。桁架部分得解。处对桁架作用了,由此以及处反力,杆,计算梁式杆弯矩图。考虑绘制支座反力先计算三铰,看成三铰结构,特点:由EDAEAEAABCABCDEqL23qL23qL25qL25qL25qL212qL212qL230qL22
44、5。各杆轴力顺利计算出来反力后、,计算出杆轴力为容易判断弯矩图和杆内力,就可作特点:先计算FC0FDDECBABABCDEF2qL212qL21ABCD0DABDCBAC内力为杆部分为二元体,特点:P4ABCD征直接作弯矩图可由刚架弯矩图基本特处都没有水平反力、特点:DCBAP21P21P21P21曲变形。忽略轴向变形时,无弯,弯矩图反对称。结构对称,荷载反对称Pa21的。第二层、第三层是一样后,做完第一层刚架弯矩图Pa21Pa21有弯曲变形。忽略轴向变形时,只有ABCPABCPa2于计算支座反力。为二力杆,此题关键在、BCABABCDEBCBYCYCX, 0X 0XC, 0MC0604Y12
45、10620BkN20YB杆弯矩图可顺利作出)(DEBDBYBCNDYDX, 0MD04N2Y420BCBkNNBC10, 0Y 0YD, 0X kNXD10kN20kN10kNm604020202060弯矩图可直接作出就不用计算支座反力,如果只做弯矩图的话,10055P2P4PP3P6P2P4图可直接作出先计算支座反力,弯矩PLPL2PL4PL3P2P4P6计算支座反力是关键ABCDEGFAYBYCY, 0MA0Ma4Ya3YCB, 0Y 0YYYACBAED考虑ADEAYDGNEXEY, 0ME0aYa5 . 0NADGGFBC考虑BCGFBYCYDGN, 0MF0a5 . 0Na2YaYD
46、GCB解得:aM2YCaM3YBaMYAaM2NGDMMM2MMM计算支座反力是关键kN5 . 4YB kN5 .10YA kN12MD (112)ABCD步骤为计算支座反力是关键,kN10YCDC :考虑ABCD30kNm弯矩图单位:30 kN20Y,0MAB考虑整体:1057530(113)步骤为计算支座反力是关键, qa21Y,0MABAD:考虑0aXa2XaY,0MCFAB 考虑整体:0XX,0XCF qa21XC qa21XF2qa212qa212qa2qa81(114)H步骤为计算支座反力是关键, kN18Y,0MCBBC:考虑013181426610M,0MAA 考虑整体: kN
47、10X,0XA 顺时针kNm6MA kN6Y,0YA 压:考虑结点kN10NCCH 拉kN8NCD 是零杆、FHDH(115)H步骤为计算支座反力是关键, kN18Y,0MCBBC:考虑013181426610M,0MAA 考虑整体: kN10X,0XA 顺时针kNm6MA kN6Y,0YA 压:考虑结点kN10NCCH 拉kN8NCD 6361824612是零杆、FHDHkNm弯矩图单位:步骤为计算支座反力是关键, 逆时针:考虑kNm60M,kN30N,kN230NGHHHDG kN18NC考虑整体: kN34NA(116)步骤为计算支座反力是关键, 逆时针压:考虑kNm60M,kN30N,
48、kN230NGHHHDG kN18NC考虑整体:607260 kN34NA446kNm弯矩图单位:步骤为计算支座反力是关键,:、分别考虑EGCE(117)步骤为计算支座反力是关键,:、分别考虑EGCEHEXEYEXEYkN1YE 步骤为计算支座反力是关键,:、分别考虑EGCEkN1YE 2211kNm弯矩图单位:杆的内力,步骤为、关键是计算CDGH,0MA 考虑整体: kN16NBD,0NDF 考虑下图可知DFNCDNGHN 压kN16NCD ,0MF 拉kN22NGH 328896kNm弯矩图单位:(118)杆的内力,步骤为关键是计算CDABCDEF,0X 考虑整体:AXBX020XXBA
49、ACEBDFAXCDNEFN,0MAEE :考虑02N6XCDA BXCDNEFN,0MBFF :考虑02N2204XCDB (拉)kN60NCD (119)ABCDEF杆的内力,步骤为关键是计算CD,0X 考虑整体:020XXBA ,0MAEE :考虑02N6XCDA ,0MBFF :考虑02N2204XCDB (拉)kN60NCD 8080kNm弯矩图单位:m2m2m2m2m2m2kN8kN8ABCDEGFH受力:处约束力及二力杆关键是计算EGBkN8NNDA 考虑整体:kN24NEABEG :考虑ABEBYBXEGNANkN4XB kN4YB (120)m2m2m2m2m2m2kN8kN8ABCDEGFH受力:处约束力及二力杆关键是计算EGBkN8NNDA 考虑整体:kN24NEABEG :考虑kN4XB kN4YB 888888 888888kNm弯矩图单位:m2m2m2m2m2kN20ABCDEFm/kN1点的约束力:处约束力及关键是计算支座EB0220M,0MABBA :考虑BCEFm/kN1kN20ABBXBMAYAXkNm40MB BXBMEXEY021Y,0YBCEFE :考虑kN2YE ABCDEF22404012kNm弯矩图单位:(121)
限制150内