人教版八年级上册数学 11.1.3 三角形的稳定性 教案1.doc
《人教版八年级上册数学 11.1.3 三角形的稳定性 教案1.doc》由会员分享,可在线阅读,更多相关《人教版八年级上册数学 11.1.3 三角形的稳定性 教案1.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、111.3三角形的稳定性1通过观察、感悟三角形具有稳定性,四边形不具有稳定性(重点)2三角形的稳定性在生活、生产中的实际应用(难点)一、情境导入一天数学小博士听到三角形和四边形在一起争论“有稳定性好还是没有稳定性好?”先听它们是怎么说的三角形:“具有稳定性的我最好,因为我牢固,不易变形,所以我最受欢迎,不像你四边形,你没有坚定的立场!”四边形:“灵活性强,可伸可缩,我的这些优点比起你三角形那呆板、简单、一成不变的形式不知有多优越!”三角形:“我广泛应用于人类的生产生活中,如三角尺、钢架桥、起重机、屋顶的钢架,我的用途大!”四边形:“我的用途广,像活动衣架、缩放尺、活动铁门等,人类的生活因为我而
2、丰富多彩!”假如你是数学小博士,你会如何来调解它们的争论?二、合作探究探究点:三角形的稳定性【类型一】 三角形稳定性的应用 要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,那么要使一个n边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律解:过n边形的一个顶点可以作(n3)条对角线,把多边形分成(n2)个三角形,所以,要使一个n边形木架不变形,至少需要(n3)根
3、木条固定方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解【类型二】 四边形的不稳定性 大家经常看到有些学校、小区的大门都使用了伸缩门,它常常做成四边形的形状,你知道这是为什么吗?解析:从四边形特性的角度考虑解:伸缩门做成四边形的形状,是利用四边形易变形这一特性方法总结:四边形具有不稳定性,容易变形,我们生活中的很多实例都利用了这一性质,注意在日常生活中积累这方面的经验三、板书设计三角形的稳定性1三角形具有稳定性2四边形没有稳定性3三角形的稳定性的应用4四边形的不稳定性的应用在教学三角形的稳定性时,利用多媒体引导学生探寻三角形稳定性的数学含义,进而用三角形的稳定性解释“为什么不易变形”,再回归生活,运用三角形的稳定性解释如何解决生活中的问题学生清楚地认识到“不易变形”是三角形的稳定性的一个表现,一种应用,而不是将三角形的稳定性与“不易变形”划等号这样的教学既使得学生对稳定性有了正确清楚的认识,也为以后进一步学习三角形的稳定性和“全等三角形”的判定方法奠定了认知的基础
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版八年级上册数学 11.1.3 三角形的稳定性 教案1 人教版八 年级 上册 数学 11.1 三角形 稳定性 教案
限制150内