人教版九年级上册数学 第24章 【教案】垂直于弦的直径.docx
《人教版九年级上册数学 第24章 【教案】垂直于弦的直径.docx》由会员分享,可在线阅读,更多相关《人教版九年级上册数学 第24章 【教案】垂直于弦的直径.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、241.2 垂直于弦的直径 教学目标:(1) 知识与技能理解圆的轴对称性及垂径定理的推证过程;能初步应用垂径定理进行计算和证明;(2) 过程与方法进一步培养学生观察问题、分析问题和解决问题的能力;(3)情感态度与价值观通过圆的对称性,培养学生对数学的审美观,并激发学生对数学的热爱教学重点、难点:重点:垂径定理及应用;从感性到理性的学习能力难点:垂径定理的证明教学学习活动设计:(一)实验活动,提出问题:1、实验:让学生用自己的方法探究圆的对称性,教师引导学生努力发现:圆具有轴对称、中心对称、旋转不变性.2、提出问题:老师引导学生观察、分析、发现和提出问题.通过“演示实验观察感性理性”引出垂径定理
2、(二)垂径定理及证明:已知:在O中,CD是直径,AB是弦,CDAB,垂足为E求证:AE=EB证明:连结OA、OB,则OA=OB又CDAB,直线CD是等腰OAB的对称轴,又是O的对称轴所以沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,因此,AE=BE从而得到圆的一条重要性质垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧组织学生剖析垂径定理的条件和结论:CD为O的直径,CDABAE=EB.为了运用的方便,不易出现错误,将原定理叙述为:过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分弦所对的劣弧.加深对定理的理解,突出重点,分散难点,避免学生记混.(三)应用
3、和训练例1、已知在O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求O的半径分析:要求O的半径,连结OA,只要求出OA的长就可以了,因为已知条件点O到AB的距离为3cm,所以作OEAB于E,而AEEBAB=4cm此时解RtAOE即可解:连结OA,作OEAB于E则AE=EBAB=8cm,AE=4cm又OE=3cm,O的半径为5cm说明:学生独立完成,老师指导解题步骤;应用垂径定理计算:涉及四条线段的长:弦长a、圆半径r、弦心距d、弓形高h关系:r=h+d;r2=d2+(a/2)2例2、已知:在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点求证AC=BD(证明略)说明:此题为基础题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案 人教版九年级上册数学 第24章 【教案】 垂直于弦的直径 人教版 九年级 上册 数学 24 垂直 直径
限制150内